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Abstract: Deep learning has become a transformative technology that is widely applied across various 

fields, including healthcare, autonomous systems, and multimedia processing. One of its most 

controversial uses is in the generation of DeepFake videos, which are created using a deep learning 

method called Generative Adversarial Networks (GANs). These networks generate highly realistic fake 

content by swapping faces, altering facial expressions, changing gender or age, and creating entirely 

synthetic individuals. While DeepFake technology has creative applications in film-making, virtual 

reality, and gaming, its misuse poses significant threats. Malicious use cases include financial fraud, 

spreading misinformation, political manipulation, cyberbullying, and the erosion of public trust. Due to 

the high quality and realism of DeepFakes, detecting such videos with the human eye is extremely 

difficult, prompting the need for automated detection systems. Researchers have developed numerous 

deep learning-based models to tackle this issue. Convolutional Neural Networks (CNNs), including 

ResNet, VGG16, EfficientNet, and XceptionNet, are effective in extracting spatial features from video 

frames. Recurrent Neural Networks (RNNs), such as Long Short-Term Memory (LSTM), are used to 

analyze temporal dependencies across sequences of frames. Some studies also integrate CNNs with 

RNNs or attention mechanisms to improve performance. Recently, Vision Transformers (ViT) and hybrid 

deep learning models have shown promising results in DeepFake detection tasks. Pre-trained models, 

transfer learning, and ensemble approaches are also employed to boost detection accuracy. This paper 

presents a comparative study of various deep learning techniques for detecting DeepFake videos, 

analyzing their effectiveness, challenges, and potential future improvements using popular datasets like 

FaceForensics++, DFDC, and Celeb-DF. 
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I. INTRODUCTION 

Deepfakes are highly realistic or deliberately manipulated images, videos, or audio recordings generated using artificial 

intelligence, particularly deep learning neural networks. These are typically created by training deep neural networks on 

extensive datasets of real media and then using them to generate new, synthetic content that convincingly imitates the 

original source. As deepfakes become increasingly sophisticated, they are often indistinguishable from authentic media, 

making detection a significant technical challenge. This has led to active research in developing automated detection 

methods, many of which rely on neural networks and machine learning algorithms. Deep neural networks such as 

Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and hybrid models have been commonly 

used. CNNs are effective in detecting visual inconsistencies in images and videos, such as altered facial features or 

unnatural textures. RNNs, especially Long Short-Term Memory (LSTM) networks, are useful for analyzing temporal 

sequences in video frames to identify subtle behavioral inconsistencies. GANs (Generative Adversarial Networks), 

while typically used for generating deepfakes, can also be repurposed for detection by learning the distribution of real 

and fake data. The combination of architectures like ResNet50 with LSTM has shown promise in improving detection 

accuracy and robustness. However, several limitations persist. These include high computational requirements, limited 

generalization across datasets, vulnerability to adversarial attacks, and challenges in interpretability. Moreover, 
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attackers can make small perturbations to fool even well-trained networks, making robust detection increasingly 

complex. Despite these issues, the field continues to advance with the aim of building more accurate, efficient, and 

explainable deepfake detection systems capable of real-time performance and adaptability across varying content types. 

Deepfake technology is an advanced method for generating manipulated videos using artificial intelligence, particularly 

deep learning techniques. It involves creating synthetic media that closely imitates real images or videos, often making 

it difficult for the human eye to distinguish between real and fake content. Deepfakes are commonly produced using 

Generative Adversarial Networks (GANs), which consist of two competing neural networks: a generator that creates 

fake media and a discriminator that evaluates its authenticity. This adversarial process continues until the generated 

content becomes indistinguishable from real media. While Deepfake technology has legitimate and creative 

applications—such as in film-making, animation, and virtual reality—it also poses significant risks. Malicious uses 

include spreading political misinformation, blackmail, cyber fraud, and even promoting terrorism. As a result, there is 

an urgent need for highly accurate and efficient Deepfake detection systems. Deep learning models such as 

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) have been extensively used for this 

purpose. CNNs—such as ResNet, VGG16, and EfficientNet—are adept at extracting spatial features from video frames, 

whereas RNNs, especially Long Short-Term Memory (LSTM) networks, are effective in capturing temporal patterns 

across sequences of frames. Combining CNNs and RNNs addresses issues like resolution inconsistency, frame 

incompatibility, and temporal discontinuity, improving overall detection performance. Additionally, hybrid models that 

integrate CNNs with Support Vector Machines (SVMs) have shown higher accuracy and robustness compared to CNN-

RNN models. This study aims to compare and analyze different Deepfake detection architectures by leveraging deep 

learning techniques to extract key features from video frames and determine their authenticity. 

 

II.  MODES OF COMMUNICATION 

Voice Communication  

Voice-based interactions, especially in streaming platforms, have evolved with improvements in codecs and low-

latency protocols. In the context of deepfake detection, synthetic voice generation using AI poses a new challenge. 

Technologies such as Voice over LTE (VoLTE) and 5G-enabled voice communication introduce new vectors for 

deepfake manipulation, requiring advanced voice authentication and speech-based deepfake detection methods. Future 

6G networks aim to offer even lower latency and higher fidelity, which could both enhance real-time communication 

and increase the risk of more convincing fake voice content. [5].  

 

Data Communication:  

Data transfer is a core component in streaming platforms where live and recorded videos are transmitted across the 

internet. As deepfake content is typically data-heavy and often indistinguishable from real footage, high-speed data 

communication is essential for real-time analysis and detection. Advanced networks like 5G and upcoming 6G will 

support ultra-reliable low-latency communications (URLLC), which are crucial for timely identification of manipulated 

streams. 

 

Machine to Machine (M2M) communication: 

M2M communication plays a vital role in distributed AI-based detection systems. In deepfake detection frameworks, 

interconnected devices—such as edge servers, cloud nodes, and AI accelerators—communicate autonomously to 

process video data, perform real-time inference, and update detection models. Future 6G-enabled M2M networks will 

enhance energy efficiency and security, allowing for seamless integration of smart surveillance and monitoring systems 

capable of identifying synthetic content autonomously. 

 

Multimodal Communication: 

Deepfake detection often involves multimodal analysis—text, image, audio, and video are all analyzed to detect 

inconsistencies. Communication technologies that integrate these formats are crucial for systems that process video 

captions, audio dialogues, and facial expressions together. Applications such as video conferencing tools and streaming 
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platforms (e.g., Zoom, Twitch) rely on multimodal communication, which deepfake detection systems must monitor to 

catch subtle manipulations in live or archived content. 

 

Real time multimedia communication:  

Live streaming platforms are primary targets for deepfake misuse, where manipulated content can be spread instantly. 

Real-time multimedia communication requires systems that can process video streams with minimal latency. Deepfake 

detection models deployed at the network edge (using edge AI or 5G infrastructure) reduce response time and enable 

immediate flagging of suspicious content. With 6G’s expected enhancements in latency and throughput, even more 

accurate and responsive detection systems will be feasible. 

 

Broadcast Communication:  

Broadcast environments—such as digital TV, social media livestreams, and emergency messaging—must safeguard 

against fake content being disseminated on a large scale. Technologies like LTE-Broadcast enable high-capacity 

content sharing, which deepfake detectors must monitor to prevent large-scale misinformation. Future 6G technologies 

like Visible Light Communication (VLC) could offer new, localized broadcasting mediums that require tailored 

detection mechanisms to ensure authenticity.  

 

Future-Oriented Communication:  

Holographic communication and immersive media—envisioned in 6G and beyond—pose new challenges for deepfake 

detection. 3D deepfakes and AI-driven avatars can manipulate virtual presence in ways current systems may not detect. 

Future-oriented communication networks will demand more advanced detection algorithms capable of processing 

volumetric data, behavior modeling, and spatial consistency across high-resolution interactive environments. 

 

III. CHARACTERISTICS OF LIVE DEEPFAKE DETECTION SYSTEMS IN STREAMING PLATFORMS: 

 Portability: Live deepfake detection systems can be deployed on portable edge devices, allowing real-time 

monitoring in remote or mobile environments such as on-site surveillance cameras, mobile phones, or drone-

based video feeds. This portability ensures deepfake detection can occur anywhere streaming happens, without 

reliance on fixed infrastructure.. 

 Wireless Connectivity: Wireless technologies such as 4G, 5G, and Wi-Fi are essential for transmitting live 

video data from streaming sources to detection models hosted in cloud or edge servers. Seamless wireless 

communication ensures that deepfake analysis can be done in near real-time without interrupting the user’s 

experience. 

 Ubiquity: Detection systems must be universally accessible across various platforms—mobile apps, social 

media, streaming services, and video conferencing tools. Ubiquity ensures that the protection against 

manipulated media is active regardless of the device, network, or platform used. 

 Personalization: Deepfake detection can be tailored to individual user behavior or content type. For instance, 

AI models can learn a streamer’s typical facial patterns, voice tone, or gesture movements, enabling more 

accurate detection when deviations caused by deepfake manipulation occur. 

 Convenience Integration of detection tools within streaming platforms must be seamless and non-intrusive. 

Users, moderators, or system admins should receive alerts or results with minimal friction, ensuring deepfake 

detection doesn't interrupt normal streaming activities. [9]. 

 Resource Sharing: Detection systems often rely on distributed computing resources. Streaming platforms may 

offload processing tasks to edge nodes or cloud-based servers that share GPU and storage resources to analyze 

frames, extract features, and run detection algorithms efficiently. 

 Context-Awareness: Advanced detection models use contextual data such as audio cues, facial movements, 

head pose, and even metadata like stream origin or transmission patterns to enhance accuracy. These systems 

self-adjust detection thresholds based on content type and environment. 
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 Power Efficiency: Real-time deepfake detection must be computationally efficient to operate on low-power 

devices like mobile phones or embedded systems in cameras. Power-optimized models and hardware 

acceleration help sustain long-term use in real-time scenarios without draining resources. 

 Security: Security is critical, as adversaries may attempt to bypass detection. Systems must use encrypted data 

channels, secure model hosting, and robust authentication protocols to prevent tampering and ensure the 

integrity of the detection process in live environments. 

 

IV. OBJECTIVES OF LIVE DEEPFAKE DETECTION IN STREAMING PLATFORMS 

1. Always Connected, Real-Time Monitoring: 

Live deepfake detection systems aim to operate continuously and ubiquitously—across all devices, platforms, and 

networks—so that manipulation in live-streamed content can be identified instantly. The goal is to ensure that detection 

systems are always connected and capable of flagging deepfakes whether users are streaming from home, work, or 

public environments. [11].  

2. Enhance Security and Trust in Real-Time Content: 

By enabling real-time monitoring and flagging of synthetic content, deepfake detection boosts the reliability of live 

streams. It helps protect users, creators, and organizations from misinformation, impersonation, or malicious 

manipulation, thereby preserving the authenticity of digital communication. 

3. Enable Seamless Detection without Interrupting User Experience: 

A core objective is to integrate detection mechanisms without disrupting streaming workflows. Detection should run in 

the background, alerting moderators or systems when fake content is suspected—without interfering with user 

interaction, streaming quality, or platform usability. 

4. Support Real-Time Decision Making for Moderation and Response: 

In fast-paced scenarios like live news, political broadcasts, or public alerts, platforms must make immediate decisions 

about flagged content. Deepfake detection systems provide up-to-date analytics to support fast, informed decisions—

whether it's pausing a stream, issuing a warning, or initiating an investigation. 

5. Allow Personalization and Custom Detection Policies: 

Deepfake detection should be adaptable to the needs of users, platforms, and regulators. Streamers or enterprises may 

configure detection systems based on the nature of their content (e.g., entertainment vs. education) or target audience, 

enhancing relevance and control. 

6. Promote Learning and Innovation in Detection Models: 

The field of deepfake detection is evolving rapidly. Platforms must support continual training and refinement of AI 

models using new data and adversarial examples. This fosters innovation and ensures that detection systems keep pace 

with increasingly advanced synthetic content. 

7. Ensure Broad Accessibility of Detection Systems: 

A key goal is to make deepfake detection technology available not just to major platforms but also to smaller content 

creators, rural users, and public service providers. By integrating these tools into open APIs or SDKs, streaming 

services can democratize access and improve safety across all digital spaces. 

 

V. DISTRIBUTED ARCHITECTURE FOR LIVE DEEPFAKE DETECTION 

Live deepfake detection in streaming platforms demands a dynamic, scalable, and efficient system architecture capable 

of handling vast volumes of video data in real-time. Inspired by mobile agent-based architectures, modern detection 

systems can leverage distributed AI components to access, analyze, and respond to potential deepfake threats without 

relying solely on centralized servers. These distributed agents or modules are deployed across edge nodes, cloud 

servers, and local streaming points to enable decentralized processing close to the data source, thereby reducing latency 

and improving responsiveness—especially critical in live streaming environments. 

Such decentralized architecture enhances fault tolerance and system flexibility. If a central detection node becomes 

inaccessible, edge-based or distributed modules can autonomously continue monitoring and processing, ensuring 
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continuous protection against manipulated content. This also allows load balancing, where computational tasks are 

intelligently distributed across multiple hosts based on demand and resource availability. The system adapts 

dynamically to workload changes, optimizing resource usage and maintaining detection speed and accuracy even 

during peak traffic. 

Applications of this architecture are particularly useful in large-scale platforms such as social media livestreams, multi-

region content delivery networks (CDNs), and collaborative moderation systems. These setups often require 

asynchronous content analysis, low bandwidth usage, and support for high-latency environments—all of which are 

addressed effectively by distributed detection agents. 

A practical implementation can be envisioned through an intelligent streaming security layer, where microservices or 

AI containers perform real-time face detection, frame analysis, and decision-making independently, yet in coordination. 

These components can be built using frameworks like TensorFlow Serving, NVIDIA Triton Inference Server, or edge-

focused platforms such as AWS Greengrass or Azure Percept. By enabling autonomous detection across the network, 

the system remains scalable, responsive, and adaptable to the evolving complexity of deepfake threats. 

 

VI. APPLICATIONS OF LIVE DEEPFAKE DETECTION IN STREAMING PLATFORMS 

Fast Processing for Live Content Analysis: 

The availability of high-speed data transfer through 5G and next-generation networks enhances the capability of 

deepfake detection systems to analyze live high-definition streams in real time. Fast broadband and low latency enable 

instant video frame processing and anomaly detection across platforms, allowing proactive content moderation and 

security in live sessions. 

Automation in Moderation and Smart Detection Systems: 

Live deepfake detection benefits from automated moderation tools powered by artificial intelligence. Similar to 

industrial IoT environments, streaming platforms can employ dense detection networks supported by edge and cloud 

infrastructure to identify manipulation in real-time streams. Automation enables predictive flagging, alerts, and 

response actions, helping platforms scale moderation across thousands of concurrent streams. 

Augmented and Virtual Reality (AR/VR) Protection: 

As AR and VR become increasingly integrated into streaming platforms (e.g., immersive meetings or 3D live avatars), 

the risk of visual and behavioral manipulation rises. Deepfake detection tools are now being extended to protect users in 

virtual environments by identifying face-swapped avatars or synthetically generated behaviors within AR/VR sessions. 

Telepresence and Remote Interaction Security: 

In contexts like virtual healthcare consultations, online education, and remote conferencing, protecting the integrity of 

participants is crucial. Deepfake detection tools help authenticate identities and prevent synthetic impersonation during 

video sessions, ensuring credibility and trust in professional virtual interactions. 

Smart Platforms and Content Safety: 

Streaming systems, like smart cities, benefit from coordinated detection across different layers—application, edge, and 

core networks. Deepfake detection tools support platform-wide safety by integrating with APIs, content delivery 

networks (CDNs), and surveillance tools to identify coordinated attacks or content spoofing during high-impact 

broadcasts. 

User Behavior Analysis and Anomaly Detection: 

Just as Wi-Fi-based motion detection enables activity tracking, deepfake detection systems can utilize behavioral 

patterns (e.g., blinking, gaze shift, lip-sync mismatch) to identify anomalies in live video content. AI-enhanced models 

classify these visual inconsistencies, helping distinguish between real and fake presence during a stream. 

Passive Authentication and Identity Verification: 

Live streaming platforms are beginning to implement passive authentication mechanisms that analyze audio-visual 

characteristics of users to verify their identities. Subtle variations in facial motion, speaking style, or head pose can be 

used for real-time verification, reducing the chances of deepfake impersonation. Such techniques offer a device-free 

alternative to traditional biometric verification, enhancing security without user friction. 
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Secure Real-Time Communication and Data Integrity: 

By analyzing signal patterns and compression artifacts, deepfake detection models can secure video and audio channels. 

Inspired by RF signal analysis used in device-free applications, these models help establish trust in communication by 

identifying manipulated or spoofed video streams and preventing their propagation across the network. 

 

VII. EMERGING TECHNOLOGIES IN LIVE DEEPFAKE DETECTION FOR STREAMING 

The growing scale and complexity of real-time video content across streaming platforms have created an urgent 

demand for technologies capable of handling large volumes of multimedia data with minimal latency. Similar to 

broadband applications in mobile computing, deepfake detection systems require high-throughput networks to 

efficiently analyze live video streams, facial movements, voice patterns, and behavioral cues. These systems must 

process and transmit large amounts of visual and audio data at high speeds—often under strict time constraints—to flag 

and respond to manipulations before content reaches viewers. 

To support such capabilities, advances in networking—like 5G and upcoming 6G infrastructure—are critical. High-

capacity spectrum allocations, similar to those used in public safety data networks, can also be envisioned for content 

moderation and live detection pipelines, ensuring uninterrupted performance during peak streaming periods or crisis 

broadcasts. Additionally, edge computing technologies are gaining prominence, enabling detection models to run close 

to the data source (e.g., on user devices or local streaming nodes), thereby reducing reliance on centralized servers and 

minimizing latency. 

Emerging technologies such as content-aware mesh networks, AI-powered multi-path inference systems, and video 

integrity verification chains are being developed to enhance reliability and responsiveness. Mesh networks allow 

decentralized moderation across multiple nodes within a platform’s ecosystem, while multi-path streaming enables 

adaptive detection by distributing content through different AI services for redundancy and verification. These 

innovations, along with continued enhancements by major cloud and CDN providers, are shaping the next generation of 

secure and intelligent streaming environments—capable of identifying and neutralizing deepfakes in real time with 

speed, precision, and resilience. 

 

Technologies Commonly Used Today:  

Platform-Based Detection Infrastructure: 

Many large-scale platforms (e.g., YouTube Live, Facebook Live, Twitch) operate their own dedicated detection 

pipelines, similar to agency-built networks. These systems are optimized for internal use and offer custom deep learning 

models integrated directly into the video processing flow. While powerful, such infrastructures are limited to the 

specific ecosystem and often lack adaptability for external or decentralized streaming setups. 

Cloud-Based Detection Services (Public Network Integration): 

Most modern platforms increasingly rely on cloud-based deepfake detection services maintained by commercial 

providers such as AWS, Microsoft Azure, or Google Cloud. These solutions offer high-speed processing, large-scale 

video analysis, and model updates, and are flexible enough to integrate across various platforms via APIs. Though they 

typically incur ongoing service fees, they are scalable and widely accessible, even for smaller platforms. 

On-Premise or Localized Detection Nodes: 

Some platforms implement localized detection units—similar to agency-installed Wi-Fi systems—for handling specific 

types of content at the network edge. These systems offer fast inference speeds and reduced latency but are usually 

limited in scope, supporting detection in specific environments like corporate meetings, education platforms, or secure 

private streams.Together, these technologies form the backbone of modern deepfake detection efforts in streaming 

environments. Whether centralized, cloud-driven, or locally deployed, each offers trade-offs between speed, scalability, 

privacy, and cost—all of which must be carefully considered based on the platform’s user base, content type, and threat 

model. 
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VIII. SOLUTIONS TO THE CHALLENGES OF LIVE DEEPFAKE DETECTION IN STREAMING 

PLATFORMS 

As deepfake detection becomes a critical component in ensuring the integrity of streaming content, platforms face 

several key challenges—ranging from computational limitations and latency, to inconsistent data quality and system 

scalability. Solutions are emerging through the integration of cloud-based architectures, edge processing, and intelligent 

task distribution strategies to support real-time and large-scale detection efforts. 

 

Computational Limitations in Real-Time Detection 

Solution: Model Virtualization and Task Migration 

Virtualization Deepfake detection tasks—such as facial feature extraction, temporal sequence analysis, and voice 

synthesis validation—are computationally intensive. Virtualization allows these processes to be hosted in the cloud 

rather than on local streaming devices, reducing the burden on end-user hardware. Detection pipelines can be 

virtualized across distributed GPU clusters, enabling scalable analysis with minimal impact on streaming quality[26].  

Task Migration:Task migration involves dynamically shifting detection tasks (e.g., frame-by-frame analysis or deep 

neural network inference) from overloaded edge devices or servers to more capable cloud nodes. Results can then be 

transmitted back to the platform in real-time, allowing detection systems to remain lightweight while still performing 

deep analysis effectively. This is especially valuable in resource-constrained environments or mobile streaming 

contexts. 

 

Inconsistent Communication and Network Delays:. 

Solution: Bandwidth Optimization and Edge Intelligence 

Bandwidth Upgrading To handle high-resolution video streams and maintain smooth, real-time detection, streaming 

platforms must invest in high-bandwidth infrastructure. Enhancements such as dedicated detection pipelines, CDN 

acceleration, and traffic prioritization help minimize lag in both video delivery and detection feedback. 

Minimization of Data Delivery Time Edge computing enables AI models to be deployed closer to users—on streaming 

endpoints, smart cameras, or regional edge servers. This reduces round-trip latency and allows for faster frame capture, 

processing, and decision-making. In the context of deepfake detection, low-latency edge nodes can pre-process and 

analyze content locally before offloading more complex analysis to the cloud. 

Balancing Detection Workloads Across Systems: With mobile devices having very limited resources, computationally 

as well as data intensive applications cannot be run directly on these devices. The obvious solution is to divide the 

workload between the mobile device and the cloud so that performance is optimized.  

Elastic Application Division Mechanism:Streaming platforms must split detection workflows intelligently between 

edge devices and cloud environments. Less intensive tasks like motion analysis or face detection can run on the device, 

while computationally heavy tasks—such as deepfake classification using CNN-LSTM models—can execute in the 

cloud. This dynamic division ensures efficiency, reduces latency, and scales easily across millions of streams. 

 

IX. CONCLUSION 

In conclusion, the evolution of streaming platforms and content delivery technologies has significantly transformed 

digital communication, particularly in the context of live interactions. As streaming has shifted from simple broadcast 

models to highly interactive, real-time multimedia experiences, the threat posed by synthetic media—such as 

deepfakes—has grown substantially. Deepfakes, powered by advanced AI models like GANs and neural networks, 

have become increasingly realistic, making their detection a critical concern for platform security, user trust, and 

societal impact. The rise of high-speed internet, 5G networks, cloud computing, and edge AI has empowered platforms 

to deploy real-time detection solutions capable of identifying manipulated content during live sessions. These 

advancements also support broader applications in areas such as online education, virtual meetings, and public 

communication, where content authenticity is paramount. The integration of AI-driven deepfake detection systems has 

enhanced safety and reliability, ensuring that digital platforms can remain spaces for genuine expression and trusted 

information exchange. 
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Looking ahead, the development of next-generation technologies—such as 6G networking, holographic 

communication, and decentralized moderation frameworks—will further enhance the speed, intelligence, and scalability 

of deepfake detection systems. However, challenges remain in terms of resource allocation, processing efficiency, and 

adversarial resilience. To address these, innovations such as virtualization, task migration, edge computing, and multi-

path AI architecture will play a crucial role. 

Ultimately, the future of secure streaming lies in building adaptive, intelligent systems that can evolve alongside the 

sophistication of synthetic media. By doing so, we can safeguard digital content integrity, bridge the trust gap in virtual 

communication, and foster a more secure and authentic global information ecosystem. 
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