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Abstract: TreeSense is a lightweight, AI-powered web platform designed to simplify and democratize 

environmental monitoring through satellite and aerial imagery analysis. Aimed at addressing the 

limitations of traditional tree and land-use surveys—which are often time-consuming, resource-intensive, 

and technically demanding—TreeSense offers an intuitive solution for users to detect tree count, assess 

vegetation health, and analyze land usage patterns with minimal effort. The system integrates advanced 

APIs such as Mapbox for geographic selection, OpenWeatherMap for contextual weather data, and the 

Gemini API for intelligent image interpretation. Operating entirely on the frontend without the need for 

backend storage or custom-trained machine learning models, the platform allows real-time image 

processing and visualization via interactive charts and descriptive insights. Users can compare two 

images taken at different times to observe environmental changes such as deforestation or urban 

expansion. Employing conceptual algorithms like YOLOv8 for object detection, NDVI estimation for 

vegetation health, and semantic segmentation for land classification, TreeSense presents a robust 

foundation for academic research, civic planning, and ecological monitoring. The system was developed 

using an agile methodology with React.js and is optimized for accessibility and deployment efficiency. 

Future work aims to enhance detection accuracy, incorporate historical analysis via backend storage, 

and support real multispectral NDVI inputs. TreeSense stands as a scalable and user-friendly innovation 

in AI-assisted environmental intelligence 
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I. INTRODUCTION 

Environmental degradation, urban expansion, and climate change have significantly heightened the need for efficient, 

real-time monitoring of green cover and land use. Traditional approaches such as field surveys and manual image 

annotation are often labor-intensive, time-consuming, and cost-prohibitive—making them unsustainable for frequent or 

large-scale assessments. In response to this growing demand for scalable environmental monitoring, TreeSense has 

been developed as a user-friendly, AI-powered web application that enables users to analyze satellite and aerial imagery 

for vegetation health, tree density, and land usage patterns without requiring technical expertise or backend 

infrastructure.TreeSense empowers users to interact with environmental data through an intuitive, frontend-only 

interface, combining the power of advanced APIs and large language models. With real-time area selection via 

Mapbox, contextual weather data from OpenWeatherMap, and AI-driven image analysis provided by Google's Gemini 

API, TreeSense delivers actionable insights in seconds. The platform allows users to either select a region directly on a 

map or upload custom images for analysis, making it versatile for various use cases such as urban planning, forestry 

management, agricultural assessments, and educational projects. 

The core functionality includes detecting and counting trees, estimating vegetation health through NDVI-like 

interpretations, classifying land cover types, and comparing environmental changes over time. All results are rendered 

visually through charts and summary indicators using Chart.js or Recharts, making complex environmental data more 

accessible and interpretable. Importantly, TreeSense does not require backend servers, persistent databases, or custom-

trained machine learning models—relying instead on robust API integrations and frontend logic for rapid deployment 

and ease of use. 
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II. PROBLEM STATEMENT 

Despite the availability of high-resolution satellite imagery and advances in artificial intelligence, there remains a 

significant gap in tools that allow non-expert users to perform efficient and accurate environmental monitoring. Current 

methods for tracking vegetation health, counting trees, and analyzing land usage—such as manual field surveys, GIS 

software, or specialized machine learning models—are often expensive, require domain expertise, and are not scalable 

for frequent assessments or large geographic areas. 

Moreover, many existing platforms either demand backend infrastructure, persistent storage, or extensive model 

training, which limits their accessibility and deployment. Tools like Google Earth Engine, while powerful, are designed 

primarily for researchers and specialists, making them less user-friendly for everyday civic use, education, or local 

governance. 

The core problem is the lack of a lightweight, accessible, and intelligent platform that enables users—regardless of 

technical background—to analyze satellite or aerial images for environmental insights like tree count, vegetation health, 

and land cover classification. This gap hinders timely decision-making in urban planning, green audits, forestry, and 

environmental conservation, especially in resource-limited settings. 

 

III. LITERATURE REVIEW 

Recent advancements in remote sensing and artificial intelligence have greatly enhanced environmental monitoring, 

enabling more accurate, faster, and scalable solutions. Several key technologies and research developments serve as the 

foundation for systems like TreeSense, which leverage satellite imagery and AI for vegetation and land cover analysis. 

This section explores the relevant contributions in object detection, vegetation indexing, land classification, and image 

comparison that underpin the capabilities of TreeSense. 

 

YOLOv8 for Object Detection in Forestry 

You Only Look Once (YOLO) is a popular real-time object detection algorithm. The latest version, YOLOv8, is well-

suited for identifying trees in aerial imagery due to its high-speed inference and accuracy. It is widely used in forestry 

for automatic tree detection, species identification, and biomass estimation, allowing for efficient large-scale 

assessments without manual annotation. 

 

NDVI in Vegetation Health Monitoring 

The Normalized Difference Vegetation Index (NDVI) is a standard metric used in remote sensing to assess plant health 

and density. NDVI utilizes the red and near-infrared bands of multispectral imagery to quantify vegetation vigor. It has 

been used extensively in agriculture, conservation, and climate research to monitor ecosystem conditions over time. 

 

Semantic Segmentation for Land Use Classification 

Deep learning techniques like U-Net and DeepLabv3 are employed for semantic segmentation, where each pixel in an 

image is classified into categories such as vegetation, urban areas, water bodies, or barren land. This pixel-level 

analysis enables high-resolution mapping of land use, which is essential for environmental planning and urban 

management. 

 

Siamese Neural Networks in Change Detection 

Siamese Neural Networks (SNNs) have been employed in environmental applications to compare temporal images and 

detect changes such as deforestation, urban sprawl, or flood damage. By learning the similarity between image pairs, 

SNNs can identify subtle differences, making them valuable for monitoring environmental shifts over time. 

 

Google Earth Engine and Its Limitations 

Google Earth Engine (GEE) is a powerful platform for processing and analyzing geospatial data. While it provides 

access to a wealth of satellite imagery and analytical tools, its complexity and code-centric interface pose a barrier for 
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non-technical users. GEE lacks the simplicity and interactivity required for widespread adoption in educational or civic 

contexts. 

 

AI APIs for Image Analysis 

Large Language Model (LLM)-powered APIs like Google’s Gemini represent a new frontier in image analysis. These 

systems can interpret images contextually, generate descriptive summaries, and respond to structured prompts. They 

eliminate the need for custom-trained models, making advanced analysis more accessible to developers and non-

specialists. 

 

Weather Context in Environmental Analysis 

Incorporating weather data into image analysis enhances the reliability of insights. For example, understanding 

temperature and precipitation levels at the time of image capture can refine vegetation health assessments. APIs like 

OpenWeatherMap offer real-time data that adds environmental context to satellite-based analyses. 

 

Integration of Frontend Tools for Visualization 

Modern frontend libraries such as React.js and Chart.js have made it easier to build responsive and interactive 

dashboards. These tools play a crucial role in presenting environmental insights in a format that users can understand 

and act upon, bridging the gap between complex data and actionable knowledge. 

 

IV. OBJECTIVE 

The primary objective of TreeSense is to provide a lightweight, AI-driven platform that empowers users to analyze 

satellite or aerial images for environmental monitoring without the need for technical expertise or extensive backend 

infrastructure. By focusing on usability, accessibility, and visual interpretation, TreeSense aims to make advanced 

geospatial analysis approachable for students, planners, researchers, and civic authorities alike. 

One of the core functionalities of the system is to enable tree counting from satellite images. This objective addresses 

the growing need for automated, scalable methods to quantify urban and rural vegetation. Instead of relying on 

manually annotated images or custom-trained detection models, TreeSense conceptually integrates models like 

YOLOv8 through API-driven interpretation to deliver accurate tree detection and counting with minimal overhead. 

Another major goal is the classification of land use into categories such as vegetation, urban, water, or barren land. 

Accurate land cover analysis supports a variety of use cases, from green audits to zoning compliance and environmental 

impact assessments. By simulating semantic segmentation approaches via Gemini API, TreeSense extracts land use 

insights directly from image content, without requiring pre-trained classifiers. 

The platform also aims to provide vegetation health analysis using NDVI-like metrics. While traditional NDVI requires 

multispectral inputs, TreeSense infers vegetation vitality by interpreting color patterns and environmental cues through 

the AI model. This feature allows users to gauge ecosystem health in a simplified yet informative manner, making the 

tool useful for agriculture, forestry, and climate tracking. 

An important comparative objective is to analyze environmental changes over time. TreeSense enables users to 

compare two satellite images from different time periods to identify deforestation, urban development, or seasonal 

variation. This capability mimics the role of Siamese neural networks in change detection but is implemented through 

dynamic prompting and interpretation, allowing for intuitive temporal analysis. 

To ensure accessibility, TreeSense has been designed as a frontend-only solution with no reliance on backend databases 

or machine learning servers. This decision aligns with the goal of creating a portable, easily deployable system that can 

run on standard browsers and devices with just an internet connection, significantly lowering the entry barrier for 

environmental monitoring. 

Finally, the project seeks to offer interactive and intuitive visual outputs that translate complex data into actionable 

insights. By using tools like React.js and Chart.js/Recharts, TreeSense transforms AI-generated responses into readable 

charts, summary cards, and badges. This visual-first approach ensures that end-users—regardless of technical 

background—can interpret results and make informed decisions quickly and confidently. 
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V. METHEDOLOGY OF PROBLEM SOLVING AND EFFICIENCY ISSUES 

To address the challenge of accessible environmental monitoring, the TreeSense system was architected using a fully 

frontend-driven approach, emphasizing modularity, low latency, and portability. Users interact with the application via 

a browser interface built in React.js, where they can select a region using an embedded Mapbox map or upload custom 

images. Once the area is selected, its geographic coordinates and surface area are automatically calculated, enabling 

spatial context for subsequent analysis steps without requiring backend computation or storage. 

The core image analysis process is facilitated through prompt-based interactions with the Gemini API, a multimodal AI 

system. Instead of training custom detection models like YOLO or segmentation networks such as U-Net, TreeSense 

offloads this task to Gemini via carefully engineered prompts. These prompts include the image, metadata, and user-

selected analysis tasks such as tree counting, NDVI estimation, or land cover classification. The API returns a 

structured output that is parsed and visualized using JavaScript libraries like Chart.js and Recharts, offering users 

insights in the form of charts, percentages, and textual summaries. 

For comparative analysis, users can upload two satellite images taken at different times. The system constructs a 

differential prompt to Gemini, asking it to detect environmental changes such as vegetation loss or urban growth. This 

approach mimics the behavior of Siamese neural networks but requires no model training or inference time on the client 

side. By relying on Gemini’s LLM to perform context-aware reasoning, TreeSense achieves high flexibility in change 

detection without computational expense. 

To ensure contextual accuracy, TreeSense integrates the OpenWeatherMap API to fetch real-time weather conditions 

and environmental metadata for the selected region. This weather data enhances the analysis by correlating vegetation 

health with current temperature or precipitation levels. However, in cases of weather API failure or image resolution 

issues, fallback mechanisms such as mock responses or simplified prompts are used to ensure the system remains 

responsive and usable. 

Despite its advantages, the efficiency of this approach is bounded by external API limitations. The response time and 

accuracy of image interpretation depend on the performance of the Gemini API, which may vary based on server load 

or image complexity. Additionally, image quality and resolution directly impact the accuracy of tree detection and land 

classification. The absence of backend processing reduces latency but also imposes constraints on advanced features 

like result history or high-resolution processing. Future versions of TreeSense aim to mitigate these issues by 

incorporating optional backend support and optimized local processing modules where necessary. 

 

VI. RELATED WORKS 

he TreeSense project builds upon and intersects with several existing technologies and research domains, particularly in 

the areas of remote sensing, environmental monitoring, and AI-powered image analysis. This section highlights notable 

works that inspired the system’s features and guided its methodological choices. 

One of the most directly relevant technologies is the YOLO (You Only Look Once) object detection model, particularly 

the latest version, YOLOv8. It has been used extensively in forestry applications to detect individual tree crowns in 

aerial imagery, enabling automated tree counting and classification. While TreeSense does not directly implement 

YOLOv8 due to frontend limitations, the conceptual framework for object detection in vegetation mapping has heavily 

influenced the image analysis goals of the platform. 

Another foundational component is the NDVI (Normalized Difference Vegetation Index), a widely used vegetation 

health indicator in satellite image analysis. Traditional NDVI computation requires multispectral imagery to compare 

red and near-infrared light reflectance. While TreeSense does not use raw spectral bands, it conceptually simulates 

NDVI estimation through image interpretation using the Gemini API, making it more accessible for casual users and 

those without access to multispectral data. 

The domain of semantic segmentation is also closely related, particularly works involving U-Net and DeepLabv3 

models. These networks are commonly used in pixel-level land cover classification tasks, identifying regions of forest, 

water, urban development, and barren land. While TreeSense does not implement these models natively, its use of large 

language models to approximate segmentation outputs via natural image interpretation offers a lightweight alternative 

that preserves user accessibility. 
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In the context of change detection, Siamese Neural Networks (SNNs) have been successfully applied to detect 

differences in satellite images taken over time. These networks learn to compare two inputs and identify significant 

changes in vegetation, structure, or land cover. TreeSense replicates this functionality by prompting the Gemini API to 

evaluate and describe differences between two user-provided images, bypassing the need for complex model training 

while still achieving insightful comparisons. 

TreeSense’s architecture also draws inspiration from Google Earth Engine (GEE), a powerful platform for satellite data 

analysis. GEE allows users to write custom code to analyze time-series and geospatial data at scale. However, its steep 

learning curve and code-heavy interface limit usability for non-technical users. TreeSense addresses this gap by 

offering a visual, prompt-based system for similar analytical tasks without requiring any programming knowledge. 

In terms of image interpretation via AI, Google’s Gemini API represents a cutting-edge tool that combines computer 

vision and language understanding. Its ability to interpret visual data and respond to structured prompts enables a new 

generation of image analysis applications. TreeSense uses Gemini as a backend-as-a-service AI engine, demonstrating 

how general-purpose multimodal models can be adapted for domain-specific tasks like tree detection and land 

monitoring. 

The integration of OpenWeatherMap API also connects TreeSense with real-time environmental data sources. Projects 

in climate science and precision agriculture often combine weather data with satellite imagery to gain deeper insights. 

TreeSense uses this concept to provide enriched, context-aware analysis that factors in temperature and atmospheric 

conditions at the time of observation. 

Finally, TreeSense benefits from advancements in interactive frontend technologies such as React.js and Chart.js, which 

are used widely in dashboards and data visualization systems. These tools allow complex data to be rendered in user-

friendly visual formats, bridging the gap between technical analytics and decision-making interfaces for general users. 

 

VII. TREE COUNTING FEATURE 

Tree counting is one of the core functionalities of TreeSense, aimed at automating the detection and enumeration of 

trees in a given satellite or aerial image. Traditionally, this task requires manual annotation or specialized detection 

models, which are time-consuming and demand expert knowledge. TreeSense simplifies this process by leveraging the 

Gemini API to identify and count trees based on image features such as canopy shape, shadow, and color contrast. 

The system uses conceptual object detection techniques similar to YOLOv8, which are known for their speed and 

accuracy in real-time applications. When a user uploads or selects an image, a structured prompt is sent to Gemini 

requesting identification of tree objects. The response includes an estimated tree count and, in some cases, density 

measures or spatial distribution insights, allowing users to understand vegetation spread across an area. 

This feature is especially useful for urban green audits, forest inventory checks, or ecological studies. It empowers 

users—without GIS or machine learning knowledge—to perform essential forestry tasks in seconds. Though the model 

works on visible data rather than multispectral input, the results remain surprisingly reliable due to Gemini’s contextual 

reasoning capabilities. 

 

VIII. LAND USAGE DISTRIBUTION FEATURE 

The land usage distribution feature helps classify an area into different land types—such as vegetation, barren land, 

urban infrastructure, and water bodies. This classification provides a holistic understanding of how land is utilized, 

which is essential for urban planning, environmental compliance, and resource management. 

TreeSense achieves this by simulating semantic segmentation, typically done by deep learning models like U-Net or 

DeepLabv3. However, instead of training such models, the system constructs a carefully worded prompt for Gemini, 

which analyzes color, texture, and layout to infer land types. This technique provides approximate yet meaningful 

segmentation results suitable for non-specialist users. 

Results are returned as a percentage distribution of each land type and visualized using pie charts or bar graphs. This 

makes it easy for users to interpret spatial dominance—for instance, if an image contains 40% vegetation and 30% 

urban development. The visual representation helps in quickly identifying land use imbalances or encroachments. 
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This feature plays a key role in smart city development, land zoning, and environmental policy enforcement. By 

allowing side-by-side image comparisons, users can also detect changes in land usage patterns over time. Although not 

pixel-perfect like backend models, the simplicity, speed, and accessibility of this approach make it highly practical for 

real-world use cases. 

 

IX. NDVI ESTIMATION FEATURE 

Vegetation health analysis in TreeSense is based on a simulated version of the Normalized Difference Vegetation Index 

(NDVI). NDVI is a widely accepted remote sensing metric calculated using near-infrared (NIR) and red spectral bands, 

which are not available in standard RGB images. TreeSense circumvents this limitation by using AI-based visual 

interpretation instead of spectral calculation. 

When a user selects this feature, TreeSense sends the image and metadata to Gemini with a prompt asking for 

vegetation health assessment. The model analyzes visual cues such as leaf color, density, and texture to approximate 

NDVI values. Though not scientifically precise like true NDVI, this AI-inferred method provides an accessible and 

reliable alternative for vegetation monitoring. 

The health status is categorized into zones such as "Healthy," "Moderate," and "Stressed," along with a numerical score 

on a 0–1 scale. These outputs are displayed with color-coded badges and comparison charts, making them easy to 

interpret at a glance. Users can track trends or spot problem areas without the need for spectral cameras or GIS 

expertise. 

This feature is particularly beneficial for agriculture, reforestation projects, and ecological assessments. It enables 

timely decisions, such as irrigation scheduling or disease intervention, based on visual health cues alone. By 

democratizing vegetation health monitoring, TreeSense provides a powerful tool for sustainable land management. 

 

X. ENVIRONMENTAL SUGGESTIONS FEATURE 

Environmental suggestions provide users with actionable insights based on the analyzed image and external factors like 

weather conditions. This feature transforms raw analytical outputs into meaningful guidance, bridging the gap between 

data and decision-making. For example, based on tree cover and temperature data, the system might recommend 

afforestation, irrigation, or urban greening efforts. 

The suggestions are generated through rule-based inference, where TreeSense combines input parameters such as 

vegetation percentage, NDVI score, and current weather to derive contextual recommendations. For instance, if an area 

has low green cover and high temperature, the system may advise planting trees or installing green roofs. These 

recommendations are presented in plain language, making them accessible to all types of users. 

In addition to environmental context, TreeSense evaluates spatial patterns—for example, if trees are unevenly 

distributed or clustered in a specific zone, the system might suggest redistributing green areas to improve air quality and 

heat management. These insights are helpful for urban planners, policy makers, and community initiatives looking to 

enhance local sustainability. 

What sets this feature apart is its interpretive intelligence, powered by the Gemini API’s ability to contextualize visual 

and textual data together. Users receive not just information, but insights they can act on—making this feature a vital 

link between image analysis and real-world impact. 

 

XI. IMAGE COMPARISON (CHANGE DETECTION) FEATURE 

TreeSense's image comparison feature allows users to upload two satellite or aerial images of the same region taken at 

different times to detect environmental changes. This feature is critical for tracking deforestation, urban development, 

vegetation loss, and other dynamic land transformations over time. 

The system leverages Gemini’s language and vision capabilities to simulate the output of a Siamese Neural Network, a 

common architecture used in temporal change detection tasks. TreeSense does not require pixel-perfect alignment; 

instead, the prompt explains the task and provides both images, asking Gemini to identify and summarize changes in 

tree cover, land usage, or vegetation health. 
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The output includes side-by-side statistics and a textual summary of observed changes—such as “25% reduction in 

vegetation” or “new urban structures in northern quadrant.” These are presented in tables, charts, and descriptive text, 

allowing users to grasp the environmental evolution of a region quickly and intuitively. 

This feature has broad applications in environmental monitoring, disaster recovery (e.g., post-flood assessments), 

municipal compliance checks, and agricultural planning. It enables evidence-based decision-making, helping users 

understand the consequences of land-use decisions or natural phenomena. Its frontend-only architecture ensures quick 

results without the complexity of backend computation. 

 

XII. STATEMENT OF SCOPE 

The TreeSense project is designed to provide a lightweight, accessible platform for environmental monitoring through 

satellite and aerial image analysis. It focuses specifically on delivering key insights such as tree count, vegetation 

health, land usage classification, and environmental change detection without the need for backend servers, databases, 

or custom-trained machine learning models. By operating entirely through a frontend interface, TreeSense offers a 

rapid, cost-effective, and scalable solution that is easy to deploy and use across standard web browsers. 

The scope of TreeSense includes real-time geographic area selection using an interactive Mapbox interface, as well as 

support for custom image uploads. Once an area is selected, users can trigger AI-powered analyses that are processed 

through the Gemini API, returning structured environmental data and summaries. This includes not only quantitative 

metrics—such as tree count or NDVI score—but also visual interpretations like pie charts, bar graphs, and health 

indicators. In addition, weather data is fetched using OpenWeatherMap to provide context-aware insights. 

TreeSense also allows for comparative analysis between two time-separated images, enabling users to detect 

environmental changes such as deforestation, land conversion, or urban expansion. This feature simulates the function 

of change detection models, offering meaningful comparisons through natural language outputs and visual summaries. 

The system’s ability to interpret visual data and offer actionable environmental suggestions further broadens its use 

cases in urban planning, agriculture, and green policy design. 

While the project does not include persistent data storage or advanced GIS computation, this constraint is intentional. 

The scope remains firmly focused on creating a no-installation, low-barrier tool for non-specialists, students, civic 

bodies, and NGOs. By balancing functionality with simplicity, TreeSense demonstrates how AI and remote sensing 

technologies can be made more inclusive and impactful through thoughtful design choices. 

 

XIII. SYSTEM ARCHITECTURE 

 
Fig.1 System architecture design 
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The system architecture of the TreeSense project is designed as a streamlined, modular, and frontend-driven pipeline to 

facilitate vegetation monitoring using satellite imagery. The core components are visualized in a vertical, layered 

architecture, beginning with the User Interface (UI) built using React.js and Mapbox. This interface allows users to 

either select a specific geographic area directly on a map or upload a satellite image. Upon selection, essential 

geospatial metadata—such as coordinates and area coverage—is extracted and prepared for processing. 

Once the area or image is selected, the system enters the Image + Metadata stage. Here, contextual information is 

added, including weather data fetched via the OpenWeatherMap API. This enriched dataset—containing area size, 

weather conditions, and location details—is packaged and sent to the Gemini API, which serves as the core AI engine. 

Gemini performs image processing operations such as tree detection, vegetation health analysis (NDVI), and land 

classification. The prompt sent to Gemini is constructed dynamically using structured, descriptive inputs, ensuring 

consistent and relevant responses. 

After processing, the Gemini API returns a Structured JSON Response. This output includes key metrics such as the 

number of detected trees, vegetation indices (NDVI), and land usage percentages (e.g., green cover vs barren land). 

These structured results are parsed by the frontend and passed on to the Chart & Result UI component. This module is 

responsible for rendering the insights in a visually intuitive format using graphical elements like pie charts, bar graphs, 

and statistical summaries. Libraries like Chart.js or Recharts are used to support real-time rendering of results. 

This fully client-side architecture, as shown in the system diagram, allows TreeSense to operate without a backend 

server or custom-trained models. By leveraging APIs and browser-based computation, the platform remains 

lightweight, scalable, and highly accessible. The architecture is optimized for responsiveness, making it suitable for 

academic research, urban planning, and environmental audits with minimal technical barriers. 

Figure 2: The data flow model illustrated above captures the operational logic of the TreeSense system, guiding how 

data moves from user interaction to actionable insight. The process begins when a user selects an area using the 

Mapbox-integrated interface. Upon selection, the system calculates both the area size and corresponding geographic 

coordinates. Alternatively, the user can upload one or two satellite images for manual input. This data, along with 

optional weather context, forms the basis of a prompt that is sent to the Gemini API for intelligent analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 Data Flow Diagram 
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The core processing occurs at the Gemini API stage, where the uploaded image(s) are interpreted to extract features 

such as tree count, land coverage, and NDVI (Normalized Difference Vegetation Index). Users can choose different 

analysis options—either to assess a single image or to perform comparative analysis using two time-stamped images. 

When two images are uploaded, the system processes them sequentially to identify changes over time in vegetation 

density, land usage, and environmental conditions. The final output is presented in a user-friendly results panel that 

summarizes the findings visually and textually. 

This data flow model effectively captures both linear analysis (single-image processing) and temporal analysis (multi-

image comparison), making TreeSense a flexible tool for environmental monitoring. The use of frontend-only 

technologies ensures a lightweight architecture, while the integration with AI (via Gemini) allows for powerful image 

interpretation without the need for a custom-trained backend. 

 

XIV. OTHER SPECIFICATIONS 

Frontend-Only Architecture: 

TreeSense is designed entirely as a frontend-based application using React.js. The entire functionality—from user input 

to image processing and result visualization—occurs within the user's browser. There is no need for server-side 

processing or backend hosting. This architecture ensures the platform remains lightweight and highly responsive, 

making it ideal for quick deployment on platforms like GitHub Pages or Netlify. It also reduces infrastructure 

complexity and makes the system easier to maintain. 

No Persistent Storage or Database: 

The system does not utilize any form of backend database or permanent storage. All user interactions, uploaded images, 

and output results are handled temporarily in the session memory of the browser. As a result, once the user refreshes or 

exits the page, the data is cleared. This ensures data privacy and avoids the complications of storage management, user 

accounts, or GDPR compliance. It also simplifies the development cycle by keeping the architecture stateless. 

External API Integration: 

TreeSense integrates several powerful APIs to achieve real-time and intelligent environmental analysis. The Gemini 

API is used to perform AI-based image interpretation, including tree detection, NDVI calculation, and land 

classification. Mapbox provides the user interface for geographic area selection, while OpenWeatherMap is used to 

collect real-time weather data relevant to the selected coordinates. By leveraging these third-party APIs, the system 

avoids the need for custom machine learning models and backend computation, while still delivering accurate and 

context-aware insights to the user. 

 

XV. LIMITATIONS 

Lack of Backend and Data Persistence: TreeSense operates entirely on the frontend without any backend support or 

database. As a result, the application cannot store user-uploaded images, historical data, or analysis results. Once the 

session ends or the page is refreshed, all inputs and outputs are lost. This limits the system's usefulness for users who 

require long-term environmental tracking, reporting, or exporting of results. It also prevents features like user 

authentication, analysis history, or collaborative usage, which are often essential in research or municipal applications. 

Dependency on External APIs and Model Generalization: The functionality of TreeSense heavily relies on external 

services such as the Gemini API for AI analysis and OpenWeatherMap for environmental data. Any downtime, quota 

exhaustion, or latency in these APIs can disrupt the system’s ability to generate results. Furthermore, since the Gemini 

API uses generalized AI models not specifically trained on localized or domain-specific satellite data, the accuracy of 

tree counting, NDVI scoring, and land classification may vary. This can impact reliability, especially in complex or 

mixed-terrain environments where precision is critical. 

 

XVI. APPLICATIONS 

Municipal Green Audits and Urban Planning: TreeSense can be effectively used by municipal authorities and urban 

planners to conduct green audits and monitor vegetation across city landscapes. By enabling quick analysis of satellite 

images and estimating tree counts, NDVI, and land use distribution, the platform helps track green cover changes over 
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time. This information is essential for ensuring compliance with environmental regulations, planning new green zones, 

and maintaining ecological balance in growing urban areas. 

Forestry and Environmental Monitoring: The system is highly applicable in forest management and conservation 

projects. Forestry departments can use TreeSense to monitor deforestation, identify barren or degraded areas, and 

measure the effectiveness of reforestation efforts. Since it supports image comparisons, it allows users to detect changes 

over time, making it a valuable tool for evaluating seasonal or long-term vegetation dynamics without needing 

extensive on-ground surveys. 

Agricultural and Irrigation Planning: TreeSense also has potential applications in agriculture, particularly in assessing 

crop health and planning irrigation. By analyzing NDVI values and land cover, farmers and agricultural planners can 

identify areas of healthy versus stressed vegetation. This supports smarter resource allocation, early problem detection, 

and more efficient land management. Combined with weather data, the insights provided can guide decisions on crop 

rotation, watering schedules, and soil health maintenance. 

 

XVII. CONCLUSION 

TreeSense demonstrates that powerful environmental analysis can be achieved using a lightweight, frontend-only 

architecture by integrating modern APIs and AI services. The project successfully provides users with the ability to 

assess vegetation health, count trees, and understand land usage using satellite imagery without requiring backend 

servers or custom machine learning models. Its interactive interface, real-time weather integration, and visual result 

presentation make it both user-friendly and accessible for a wide range of applications—from academic research to 

civic planning. 

However, while TreeSense excels in simplicity and ease of use, it does face limitations related to data persistence and 

dependency on external APIs. Despite these constraints, the system lays a strong foundation for scalable and intelligent 

green monitoring tools. With potential enhancements like backend integration, model fine-tuning, and real NDVI data 

support, TreeSense could evolve into a more comprehensive platform for environmental monitoring, making a 

meaningful contribution to sustainability, urban planning, and conservation efforts. 

 

XVIII. FUTURE SCOPE 

Model Optimization: Future research will focus on further optimizing the detection algorithms to enhance performance, 

particularly in diverse and challenging environments. 

Handling Diverse Tree Species: Expanding the dataset to include a wider variety of tree species and environmental 

conditions will improve the model's generalization capabilities and accuracy. 

Real-Time Implementation: Developing a real-time tree detection system that can process aerial imagery on-the-fly will 

enhance the practicality of the solution in dynamic monitoring scenarios. 

Integration with IoT: Exploring the integration of the system with Internet of Things (IoT) devices could facilitate 

continuous monitoring of forests and urban green spaces, providing real-time data and alerts. 

User-Friendly Interface: Creating a user-friendly interface for stakeholders, such as urban planners and 

conservationists, will make the technology more accessible and enhance its usability in practical applications. 

Collaborative Projects: Collaborating with environmental organizations and government agencies to implement the 

system in real-world scenarios will provide valuable insights and drive further enhancements. 

Expanding Applications: Investigating additional applications of the technology, such as detecting other vegetation 

types or assessing environmental health, will broaden its impact and usefulness. 
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