

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 5, June 2025

AGROTECH: A Smart Agricultural System Using IOT & ML

Pinak Dange¹, Janhavi Gulve², Aman Kumar³, Hrutik Lande⁴, Prof. Dhanashri Nevase⁵, Prof. N. R. Ali⁶

Department of Computer Engineering¹⁻⁶
Smt. Kashibai Navale College of Engineering, Pune, Maharashtra, India
Savitribai Phule Pune University, Pune, India

Abstract: Agriculture remains one of the most important sectors that support human survival which supplies basic needs, a source of income for many dependants' community. Despite these advantages, resource scarcity, adverse environmental conditions and pest infestations remain serious threats to crop products. To mitigate these concerns, we present a smart agriculture system which uses the most modern technologies like IoT (Internet of Things) machine learning (ML) and sensors with automation. The system consists of an intelligent irrigation mechanism for efficient utilization of water, an animal detection system used to trace cattle, and a Light Dependent Resistor (LDR) Sensor joined with buzzer for early detection of any global environmental changes. Additionally, the integration of plant disease detection capabilities further enhances the system's effectiveness. By employing various sensors to collect data on environmental factors, including moisture and temperature, the proposed framework enables timely decision-making for crop management. The aim is to provide farmers with actionable insights, ensuring food security while minimizing resource consumption and economic losses. This review paper discusses the potential benefits and implementation strategies of such an intelligent agricultural system, emphasizing the need for innovation in agricultural practices to meet the growing demands of an increasing population

Keywords: Smart Agriculture System, Animal Detection, Smart Irrigation, Plant Disease, IOT, ML, Wireless communication

I. INTRODUCTION

The ecological cycle and food chain are heavily dependent on plants. Agriculture is undergoing a transformation due to the rapid growth of technology, particularly IoT and AI, which make it possible to monitor plant health and climatic factors like temperature, humidity, and soil moisture intelligently. [1] Sustainable agriculture encourages environmentally conscious farming methods that lower greenhouse gas emissions while maintaining biodiversity, conserving water, and maintaining the integrity of the soil. The number of farmers in India is declining despite rising agricultural output because of increased expenses and low productivity. Enhancing farming productivity and promoting sustainable agriculture can be accomplished through integrating digital technology such as wireless communication. [2] With population growth predicted to reach 9.7 billion by 2050, the global agriculture market is estimated to increase from USD 1.8 billion in 2018. Farmers will gain from the convergence of IoT and AI because it will save them time, yield accurate results, and make crop management, pest control, and monitoring tasks easier. The substantial potential of IoT to transform the agriculture industry is examined in this research. [3] Integrating modern technologies such as sensors, data management, and the Internet of Things, smart farming enhances resource management and agricultural productivity. By automating procedures like agricultural monitoring and irrigation, it contributes to the solution of issues like population expansion and climate change. Farmers, however, might find the technology expensive and complicated. [4]

Water scarcity affects crop yields and food production in India's agriculture. By reducing water usage and using automation and the Internet of Things, smart irrigation systems can ensure effective irrigation based on temperature,

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 5, June 2025

Impact Factor: 7.67

humidity, and soil conditions. With this strategy, data will be stored in the cloud for future use and water management will be improved. [5] Having nearly fifty percent of people working for agriculture, India's economy depends largely on agriculture. Through sensors which measure temperature, humidity, and moisture in the soil, smart agriculture using Internet of Things-based systems may precisely control water usage, reducing down on waste and increasing the production of crops. [6] In India, agriculture is a major source of income and is greatly affected by the changing seasons of water availability. Using sensors to monitor soil moisture and humidity, an Internet of Things (IoT)-based smart agriculture system increases production by automating watering and delivering real-time data on crop fields. [7] The Internet of Things (IoT) increases automation and decision-making in agriculture by allowing physical objects to communicate and share real-time data. Though the idea behind IoT has been around for a while, recent developments have made it more useful for controlling agricultural supplies and tracking crop growth. Three layers—physical, IoT, and cooperative—are included in our suggested architecture to handle different agricultural problems, such as supply chain management and animal control. [8] Since food crops are being used more and more for biofuels and other industrial purposes, crop production is becoming more and more important for sectors like cotton, rubber, and bioenergy. This raises questions about food security. Because every agricultural field is different and has factors influencing its yield, site-specific assessments are required to ensure optimal production. Farmers need creative, technologically advanced solutions to these problems in order to maximise output while reducing resource consumption. [9] The concept of precision agriculture, which combines sensors, data systems, and expert models to increase productivity and sustainability, emerged as a result of the need for exact control of resources such as light, water, and CO2 for green plants to grow to their full potential. Novel frameworks for smart plant management are made possible by recent developments in IoT and AI, which also allow for better agricultural practice decision-making and real-time data utilisation. [10] Seventy percent of Indians depend on agriculture as their main source of income. By ensuring that the appropriate amount of water is applied at the most beneficial times, changing from manual to automated irrigation systems can increase productivity, conserve resources, and improve agricultural performance. [11]

II. LITERATURE REVIEW:

Sr.	Title	Author Name and	Abstract	Advantages	Limitations
No.		Publication			
1.	"Smart or System Plants Using IOT & AI"	T. Shastrakar, S. Dhole, A. Patle, and Mohd. IJCRT, 2023	This paper tells us about to automate irrigation by turning the motor on or off based on the health of the plants, or sensor values. Via an android app, the farm owner may keep an eye on the procedure online.	automates irrigation	However, the system depends heavily on sensor accuracy, faces scalability challenges for larger farms, and requires stable internet connectivity for effective operation
2.	"Smart Farming: Internet of Things (IoT) -	M. Dhanaraju, P. Chenniappan, K. Ramalingam, S. Pazhanivelan, and R.	This paper emphasized the role of many technologies used for farming,	The system improves farming efficiency through IoT technologies	However, it faces challenges like high initial

 $International\ Open-Access,\ Double-Blind,\ Peer-Reviewed,\ Refereed,\ Multidisciplinary\ Online\ Journal$

Volume 5, Issue 5, June 2025

	Based Sustainable	Kaliaperumal.	particularly the IoT, in making agriculture	and promotes sustainable	costs, limited adoption due to
	Agriculture"	Agriculture, 2022, 12,	smarter and more effective in meeting future requirements using sustainable IoTbased sensors and communication technologies.	practices using sensors and communication tools, making it a future-ready solution for agricultural challenges.	a lack of technical knowledge in rural areas, and the need for reliable internet infrastructure.
3.	"IoT based Soil Nutrition and Plant Disease Detection System for Smart Agriculture"	S. Suhag, N. Singh, S. Jadaun, P. Johri, A. Shukla, and N. Parashar, 10th IEEE International Conference on Communication Systems and Network Technologies, 2021	A smart farming system includes hardware like polyhouses, sensors, to monitor crop spacing and soil moisture. The software connects to these sensors, allowing farmers to manage irrigation and automate harvesting with robotic arms. A mobile app helps them sell crops efficiently.	The system monitors crop conditions and soil moisture, enabling precise irrigation management, automates harvesting with robotic arms, and improves crop selling efficiency through a mobile app.	It requires significant hardware investment, may involve technical complexities in integration, and depends on consistent connectivity and maintenance.
4.	"A Research Paper on Smart Agriculture using IOT."	R. Srivastava, V. Sharma, V. Jaiswal, and S. Raj International Research Journal of Engineering and Technology (IRJET), 2020	The system measure moisture of soil and level of water in fields. This system works well in the ideal conditions and further improvement can be made when the conditions are not ideal like proper illumination or lightning.	The system effectively measures soil moisture and water levels in fields, helping optimize irrigation under ideal conditions.	However, its performance may degrade under non-ideal conditions, such as poor illumination or lighting, and further improvements are necessary to enhance its reliability.

ISO 9001:2015

 $International\ Open-Access,\ Double-Blind,\ Peer-Reviewed,\ Refereed,\ Multidisciplinary\ Online\ Journal$

Volume 5, Issue 5, June 2025

5.	"Smart	A. Anitha, N.	This paper proposed	The system utilizes	However, it
	Irrigation system	Sampath, and M. A.	an IoT based smart	sensors to record	relies on
	using Internet	Jerlin,	irrigation system	irrigation data and	internet
	of		utilizing sensors to	stores it in cloud	connectivity
	Things,"	International	record the data and	storage, enabling	for cloud access,
		Conference on	store it in the cloud	easy access and	and potential
		Emerging Trends in	storage.	analysis for	data security
		Information		optimized irrigation	issues may arise
		Technology and		management.	with cloud
		Engineering.		-	storage
		IEEE, Feb. 2020			solutions.
					Additionally,
					the
					system'
					s effectiveness
					can be
					influenced by
					sensor
					reliability and
					calibration.
6.	"Smart	M. S. D. Abhiram, J.	In this paper, All the	The system	However, it
	Farming	Kuppili, and N. A.	values i.e.	provides realtime	relies on Wi-Fi
	System using	Manga,	temperature, humidity	updates on	connectivity,
	IoT for	IEEE International	level, soil moisture	temperature,	which may not
	Efficient Crop	Students'	level and the rain	humidity, soil	be consistently
	Growth,"	Conference on	condition are sent to	moisture, and rain	available in
		Electrical, Electronics and	the smart phone using	conditions to	rural areas, and
		Computer	Wi-Fi. Due to this	smartphones via	the
		Science, 2020	system, adequate	Wi-Fi, enabling	system's
			water is pumped and	efficient water	effectiveness
			rain is also utilized	management and	depends on the
			efficiently. This	optimized irrigation.	accuracy of the
			system is very much		sensors used.
			helpful to farmers as		
			they need to regularly		
			pump water and		
			check the status of		
			each crop.		

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 5, June 2025

7.	"IoT Based	H. Pendyala, G. K.	Using IoT the system	The system	However, the
	Smart	Rodda, A. Mamidi, M.	can predict the soil	predicts soil	system's
	Agriculture	Vangala, S. Bonala, and	moisture level and	moisture and	reliance on
	Monitoring	K. K.	humidity so that the	humidity, enabling	accurate sensor
	System,"	Korlapati	irrigation system can	effective	data is crucial,
			be monitored and	monitoring	and any
		International Journal of	controlled. IoT works	and control	inaccuracies
		Scientific Engineering	in different domains	of	may affect its
		and	of farming to improve	irrigation. It	performance.
		Research (IJSER), July	water management,	enhances	Additionally, it
		2021	crop monitoring, soil	water	may require
			management. This	management,	substantial initial
			system also	crop monitoring,	investment in
			minimizes human	and soil	technology and
			efforts, simplifies	management while	infrastructure.
			techniques of	minimizing human	
			farming.	effort and	
				simplifying farming	
				techniques.	
8.	"Smart	K. Sekaran, M. N.	Three layers in the	The proposed	However, this
	agriculture	Meqdad, P. Kumar, S.	architecture are	architecture	reliance on
	management	Rajan, and S.	connected with cloud	features a three-	cloud
	system using	Kadry,	where all the data are	layer system	connectivity
	internet of	TELKOMNIKA	uploaded, processed	connected to the	raises concerns
	things,"	Telecommunication,	and accessed. The	cloud, facilitating	about
		Computing,	Architecture proposed	data uploading,	data
		Electronics and	in this paper, could	processing, and	security and
		Control, June 2020	provide a base for	access, which	privacy, and the
			implementation of	supports the	system may
			smart agriculture	implementation	require
			system using IoT.	of a smart	significant
				agriculture system	infrastructure
				using IoT.	investment to be
					effectively
					implemented.
					Additionally, the
					performance is
					dependent on
					consistent
					internet
					availability

 $International\ Open-Access,\ Double-Blind,\ Peer-Reviewed,\ Refereed,\ Multidisciplinary\ Online\ Journal$

Volume 5, Issue 5, June 2025

9.	"Internet-	M. Ayaz, M.	This paper considered	The paper	However, the
	ofThings	AmmadUddin, Z. Sharif,	all these aspects and	emphasizes the role	integration of
	(IoT)Based	A. Mansour, and EH.	highlighted the role of	of IoT and	these
	Smart	M. Aggoune,	various technologies,	various	technologies
	Agriculture:		especially IoT, in	technologies, such	can be
	Toward	Special Selection On New	order to make the	as wireless sensors	complex and
	Making the	Technologies	agriculture smarter	and cloud	may require
	Fields Talk,"	For Smart Farming 4.0:	and more efficient to	computing, in	significant
		Reasearch Challenges	meet future	enhancing	investment.
		and	expectations. For this	agricultural	Additionally,
		Opportunities. 2019	purpose, wireless	efficiency and	there are
			sensors, Clo	1 1	challenges
			computing,	demands.	related to data
			communication		management,
			technologies are		security, and the
			discussed thoroughly.		need for
					skilled
					personnel to
					operate and
					maintain such
					systems.
10.	"From	M. Kang and FY.	In this paper, we	The paper	However, the
	parallel	Wang,	present the three steps	outlines a threestep	approach may
	plants to smart		toward the parallel	approach for	require
	plants:	IEEE/CAA Journal of	management of plant:	managing plant	substantial
	intelligent	Automation Sinica,	growth description	growth—growth	computational
	control and	2017	(the crop model),	description,	resources and
	management		prediction, and	prediction, and	sophisticated
	for plant		prescription. This	prescription—	algorithms,
	growth,"		approach can update	enhancing the	which could
			the expert system by	expert system with	pose challenges
			adding learning	learning	for
			ability and the	capabilities and an	implementatio n
			adaption of	adaptive	in
			knowledge database	knowledge database	resourcelimited
			according to the	for	settings.
			descriptive and		
	i				

ISO 9001:2015

 $International\ Open-Access,\ Double-Blind,\ Peer-Reviewed,\ Refereed,\ Multidisciplinary\ Online\ Journal$

Volume 5, Issue 5, June 2025

			predictive model.	improved plant management.	Additionally, the effectiveness of the system relies on the quality and accuracy of the crop models used.
11.	"Sensor based Automated Irrigation System with IOT: A Technical Review,"	K. Kansara, Vishal Zaveri, Shreyans Shah, Sandip Delwadkar, and K. Jani, International Journal of Computer Science and Information Technologies, 2015,	This review is proposed to supports aggressive water management for the agricultural land. Microcontroller in the system promises about increase in systems life by reducing the power consumption resulting in lower power consumption. Automated irrigation system has a huge demand and future scope too. It is time saving, led to removal of human error in adjusting available soil moisture levels.	The syste promotes efficient water management in agriculture through automation, reduces power consumption with the use of microcontrollers, and minimizes human error in soil moisture adjustments, making it timesaving and reliable.	However, the reliance on technology may pose challenges in terms of initial setup costs and maintenance. Additionally, the system's effectiveness depends on the accurac y and reliability of the sensors used for monitoring soil moisture levels. 40 mini

International Journal of Advanced Research in Science, Communication and Technology

9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 5, June 2025

Impact Factor: 7.67

12.	"IoT Smart	U. H. D. Thinura, N.	In this paper, work.	The system allows	However, the
	Plant	Ariyaratne, V. D.	With	gardeners to	system's
	Monitoring,	Yasaswin, L. H. D.	new solution,	monitor key factors	performance
	Watering and	Ranul, H. M. Sumudu,	gardeners can monitor	such as plant	relies on stable
	Security	and M. Herath,	some important	health, soil	internet
	System".		factors like the	moisture, air	connectivity
		ResearchGate	plant's	humidity, and	and sensor
			healthiness, soil	surrounding	accuracy.
			moisture level, air	temperature,	Additionally,
			humidity level, and	enabling remote	initial setup and
			the surrounding	watering via a	maintenance
			temperature and water	mobile app from	costs may be a
			their garden from	anywhere at any	barrier for
			anywhere in the	time.	some users.
			world at any time by		
			using our app.		

III. METHODOLOGY

The system includes the DHT11 temperature and humidity sensor, and a soil moisture sensor, connected to a NodeMCU (ESP32), with a relay relay switching to control the turning off and on the water pump, which has valves and solenoid pumps setup by the NodeMCU, which is being powered by 5V supply. The DHT11 sensor activates a single-bus data format that sends 32-bits of data, with a checksum, in about 4ms. Sensor data was sent to the Blynk app, which was for monitoring purposes. Irrigation and nursery mixing was automated to reuse excess water and added nutrients from high moisture readings, will be allowed to recirculate by using submersible pumps.

In order to help optimize risks to plants' health, the system continuously monitors environmental and soil conditions. The NodeMCU receives a reading from the soil moisture sensor and if it reading drops to below a preset lower threshold, it turns on the water pump through the relay, when the water is sent directly to, and right beside the roots. This approach will limit overwatering, and conserve the amount of water that is required. Similarly, the DHT11 sensor gives readings about temperature and relative humidity monitor details, which will allow the user to keep an acute awareness of climatic changes, having an impact on growth. Real-time monitoring gives access to the information through the Blynk App and many of the conditions could have manual controls being executed if required, giving advantage to both automation but, also manual functions. Another significant feature of the setup is its intelligent management of nutrients mix. The plants are also given the opportunity of the soil - if there is moisture present; the automated setup will also provide nutrients when needed.

BASIC ALGORITHM FOR SMART IRRIGATION:

1. Initialization:

Setup sensor inputs and actuator outputs.

Connect to Wi-Fi (if applicable) and server/cloud.

2. Continuous Monitoring Loop:

Read sensor values (e.g., soil moisture, temperature).

3. Decision Making:

If soil moisture < threshold (e.g., 40%):

Turn water pump ON.

Else:

Keep water pump OFF.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 5, June 2025

4. Data Transmission:

Send current sensor readings to cloud server for logging.

Optionally, receive commands from the server (e.g., forced manual irrigation).

5. Power Management (if battery-powered):

Enter low-power sleep mode between readings.

6. Alerts/Notifications (optional):

If soil stays dry even after irrigation \rightarrow send alert to mobile app.

IV. MATHEMATICAL MODEL

The mathematical models in the AGROTECH system optimize agricultural processes through predictive analysis and data-driven decisions. These models focus on smart irrigation, plant health monitoring, and light optimization to enhance efficiency and productivity.

1. Smart Irrigation Model:

Water Requirement (W) is determined by soil moisture (M), temperature (T), and humidity (H) Equation for it is:

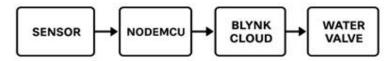
 $W=k\cdot(1-M)\cdot T\cdot(1-H/100)$

2. Plant Disease Detection (ML Optimization):

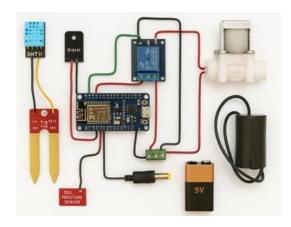
Cross-Entropy Loss function for classifying healthy vs. diseased plants:

Equation for it is:

L = - (1/N)
$$\Sigma$$
 [y_i log(\hat{y}_i) + (1 - y_i) log(1 - \hat{y}_i)], for i=1 to N


Where, $y_i = \text{True label}$, $\hat{y}_i = \text{Predicted probability}$

3. Light Optimization:


Adjust required artificial light (L) based on current sunlight intensity (S) and optimal PAR level (P): Equation for it is:

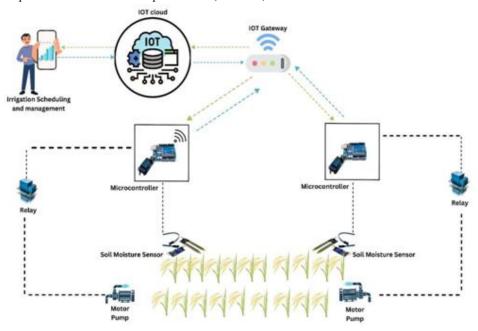
L = max(0, P - S)

BLOCK DIAGRAM:

CIRCUIT DIAGRAM:

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal


Impact Factor: 7.67

Volume 5, Issue 5, June 2025

SYSTEM ARCHITECTURE:

The system architecture consists of:

- **IoT Sensors**: Sensors deployed in the field collect data on environmental parameters such as soil moisture, temperature, humidity, and light intensity.
- Cloud Platform: The sensor data is sent to a cloud platform where it is stored and processed. ML models analyze the data and generate insights.
- User Application: Farmers access the processed data and insights via mobile and web apps. They receive real-time updates and alerts about crop conditions, diseases, and resource recommendations.

OVERVIEW OF PROJECT MODULES:

The system is divided into modular components, each responsible for a specific function:

Sensor Module:

Monitors environmental conditions like soil moisture, temperature, humidity, and light intensity using DHT11, FC-28 and LDR sensors.

Controller Module:

ESP32 microcontroller reads sensor data and executes logic for irrigation.

• Actuator Module:

Relay-controlled pump delivers water to the plants based on sensor data.

• Communication Module:

ESP32 sends sensor data to the cloud using Wi-Fi (MQTT/HTTP).

• Cloud/Server Module:

Firebase or similar platforms (MQTT) are used for data storage, analysis, and remote access.

Dashboard Module:

Mobile app (built in Flutter) displays real-time sensor data and allows manual control.

• Power Management Module:

Ensures energy supply using AC power or solar panels for outdoor deployments.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

19001:2015 COURT

Impact Factor: 7.67

Volume 5, Issue 5, June 2025

TOOLS & TECHNOLOGIES USED: HARDWARE:

- ESP32 NodeMCU
- Soil Moisture Sensor (FC-28),
- DHT11 (for temp/humidity),
- LDR (for intrusion detection)
- Relay Module,
- Water Pump,
- Solar Panel (optional)
- Battery

Fig 6.1 Arduino

Fig 6.3 Water Motor

Fig 6.5 Jumping wires

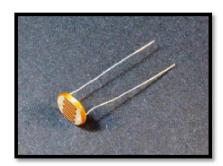


Fig 6.2 LDR Sensor

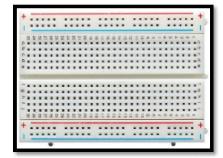


Fig 6.4 Bread board

Fig 6.6 Battery

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 5, June 2025

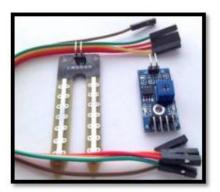


Fig 6.7 Soil Moisture and Temperature sensor

Fig 6.8 ESP32

PROGRAMMING LANGUAGES:

- C/C++ (Arduino IDE),
- Python (Raspberry Pi, if used)
- Flutter (Mobile Application development)

COMMUNICATION PROTOCOLS:

- MQTT (for lightweight IoT messaging),
- HTTP/REST API (for simple data sending),
- Wi-Fi or GSM

CLOUD PLATFORMS:

- Firebase (Real time database),
- MQTT (for lightweight IoT messaging)

MOBILE APPLICATION:

Custom App developed with help of Flutter

DATABASE:

- Firebase Realtime Database
- MQTT

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 5, June 2025

RESULTS: Outcomes:

Fig 8.1.1 Complete Model

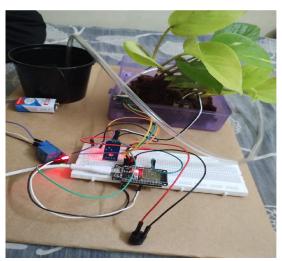


Fig 8.1.2 Complete Model

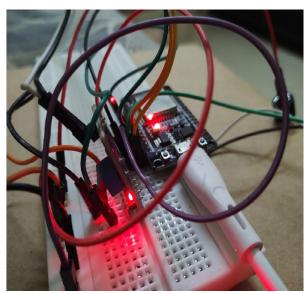


Fig 8.1.3 Bread Board & Connections

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 5, June 2025



Fig 8.1.4 PIR Sensor

Fig 8.1.5 Water Pump

Fig 8.1.7 Soil Moisture Sensor

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 5, June 2025

Fig 8.2.1 Sign in Page

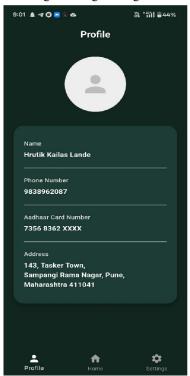


Fig 8.2.3 Profile Screen

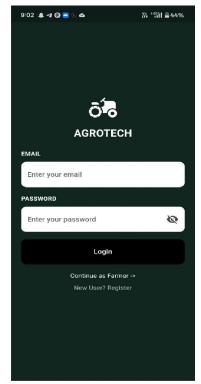


Fig 8.2.2 Login Page

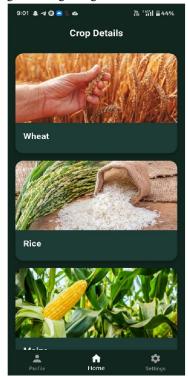


Fig 8.2.4 Home Screen

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 5, June 2025

Fig 8.2.5 Crop Detail Screen

Fig 8.2.7 Soil Moisture Screen

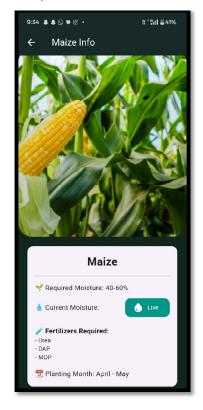


Fig 8.2.6 Crop Detail Screen

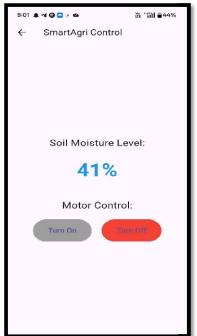


Fig 8.2.8 Soil Moisture Screen

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 5, June 2025

Impact Factor: 7.67

CONCLUSION.

This review highlights the potential of smart agricultural systems integrating IoT, sensors, and AI models to transform modern farming. By automating irrigation, detecting animals, and monitoring environmental conditions, these systems offer efficient, data-driven solutions for improving crop yields, resource management, and sustainability. Continued advancements in these technologies will further enhance agricultural productivity and resilience.

REFERENCES:

- T. Shastrakar, S. Dhole, A. Patle, and S. Mohod, "Smart System for Plants Using IOT & AI," vol. 11, no. 4,
- [2] M. Dhanaraju, P. Chenniappan, K. Ramalingam, S. Pazhanivelan, and R. Kaliaperumal, "Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture," Agriculture, vol. 12, no. 10, p. 1745, Oct. 2022, doi: 10.3390/agriculture12101745.
- [3] S. Suhag, N. Singh, S. Jadaun, P. Johri, A. Shukla, and N. Parashar, "IoT based Soil Nutrition and Plant Disease Detection System for Smart Agriculture," in 2021 10th IEEE International Conference on Communication Systems and Network Technologies (CSNT), Bhopal, India: IEEE, Jun. 2021, pp. 478-483. doi: 10.1109/CSNT51715.2021.9509719.
- [4] R. Srivastava, V. Sharma, V. Jaiswal, and S. Raj, "A RESEARCH PAPER ON SMART AGRICULTURE USING IOT," vol. 07, no. 07, 2020.
- [5] A. Anitha, N. Sampath, and M. A. Jerlin, "Smart Irrigation system using Internet of Things," in 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), Vellore, India: IEEE, Feb. 2020, pp. 1–7. doi: 10.1109/ic-ETITE47903.2020.271.
- [6] M. S. D. Abhiram, J. Kuppili, and N. A. Manga, "Smart Farming System using IoT for Efficient Crop Growth," in 2020 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS), Bhopal, India: IEEE, Feb. 2020, pp. 1–4. doi: 10.1109/SCEECS48394.2020.147.
- [7] H. Pendyala, G. K. Rodda, A. Mamidi, M. Vangala, S. Bonala, and K. K. Korlapati, "IoT Based Smart Agriculture Monitoring System," vol. 9, no. 7, 2020.
- [8] K. Sekaran, M. N. Meqdad, P. Kumar, S. Rajan, and S. Kadry, "Smart agriculture management system using internet of things," TELKOMNIKA Telecommun. Comput. Electron. Control, vol. 18, no. 3, p. 1275, Jun. 2020, doi: 10.12928/telkomnika.v18i3.14029.
- [9] M. Ayaz, M. Ammad-Uddin, Z. Sharif, A. Mansour, and E.-H. M. Aggoune, "Internet-of-Things (IoT)-Based Smart Agriculture: Toward Making the Fields Talk," *IEEE Access*, vol. 7, pp. 129551–129583, 2019, doi: 10.1109/ACCESS.2019.2932609.
- [10] M. Kang and F.-Y. Wang, "From parallel plants to smart plants: intelligent control and management for plant growth," IEEECAA J. Autom. Sin., vol. 4, no. 2, pp. 161-166, Apr. 2017, doi: 10.1109/JAS.2017.7510487.
- [11] K. Kansara, Vishal Zaveri, Shreyans Shah, Sandip Delwadkar, and K. Jani, "Sensor based Automated Irrigation System with IOT: A Technical Review," 2015, Unpublished. doi: 10.13140/RG.2.1.3342.3129.
- [12] U. H. D. Thinura, N. Ariyaratne, V. D. Yasaswin, L. H. D. Ranul, H. M. Sumudu, and M. Herath, "IoT Smart Plant Monitoring, Watering and Security System".
- [13] Bhuvan Puri, "IOT and AI-based Plant Monitoring System," International Journal of Machine Learning and Networked Collaborative Engineering, vol. 04, no. 3, pp. 135-142, 2020.
- [14] Dr. Senthil Kumar M, Sneha K, Chidhambararajan B, RajaKumar M, "IOT and AI-based Plant Monitoring System," Gorteria Journal, pp. 185-190, 2020.
- [15] Dr. Hetal Patel, Dr. Shailesh Khant, Dr. Atul Patel, "Artificial Intelligence and IOT based Smart Irrigation system for Precision Farming," CHARUSAT, vol. 12, no. 10, pp. 4462-4467, 2021.
- [16] S. V. Athawale, M. Solanki, A. Sapkal, A. Gawande, and S. Chaudhari, "An IOT-Based Smart Plant Monitoring System," in Smart Computing Paradigms: New Progresses and Challenges, pp. 303-310, Springer, Singapore, 2020.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO POOT:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 5, June 2025

- [17] R. Singh, S. Srivastava, and R. Mishra, "AI and IOT Based Monitoring System for Increasing the Yield in Crop Production," in 2020 International Conference on Electronics & Telecommunication and Electronics Engineering (ICE3), pp. 301-305, IEEE, 2020.
- [18] A. Kohli, R. Kohli, B. Singh, and J. Singh, "Smart plant monitoring system using IOT technology," in Handbook of Research on the Internet of Things Applications in Robotics and Automation, pp. 318-366, IGI Global, 2020.
- [19] M. D. D. Bin Sadli, "An IOT-based Smart Garden with Weather Station System," in 2019 IEEE 9th Symposium on Computer Applications & Industrial Electronics (ISCAIE), pp. 38-43, IEEE, 2019.
- [20] V. Puri, M. Chandramouli, C. Van Le, and T. H. Hoa, "Internet of Things and Fuzzy logic based hybrid approach for the Prediction of Smart Farming System," in 2020 International Conference on Computer Science, Engineering and Applications (ICCSEA), pp. 1-5, IEEE, 2020.
- [21] S. Siddagangaiah, "A novel approach to IOT based plant health monitoring system," International Research Journal of Engineering and Technology, vol. 3, no. 11, pp. 880-886, 2016.
- [22] P. Tangworakitthaworn, V. Tengchaisri, K. Rungsuptaweekoon, and T. Samakit, "A game-based learning system for plant monitoring based on IOT technology," in 2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE), p. 15, IEEE, 2018.
- [23] A. M. Ezhilazhahi and P. T. V. Bhuvaneswari, "IOT enabled plant soil moisture monitoring using wireless sensor networks," in 2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS), pp. 345-349, IEEE, 2017.

