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Abstract: Ensuring the reliability and safety of electrical power transmission lines is a major challenge, 

especially when unexpected faults occur. Quick and accurate identification of these faults is essential to 

minimize damage, reduce downtime, and maintain system stability. In this work, an intelligent approach 

using the Extreme Learning Machine (ELM) is proposed for detecting and classifying different types of 

faults in transmission lines. 

The ELM algorithm, known for its simple structure and fast training speed, is applied to classify fault 

types based on voltage and current signal data collected under various fault conditions. To improve 

classification performance, key features are extracted from the waveform data using statistical and 

signal processing methods. These features help the ELM model effectively distinguish between different 

fault types such as single line-to-ground, line-to-line, double line-to-ground, and three-phase faults. 

Simulation results show that the proposed ELM-based method offers high accuracy and fast response 

time, making it a promising solution for real-time fault monitoring in modern power systems. The 

outcomes also highlight the model’s robustness in handling noisy and distorted signals, proving its 

practical value in smart grid applications. 
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I. INTRODUCTION 

Electric power transmission systems play a vital role in delivering electricity from generating stations to consumers. As 

our dependence on electrical energy continues to grow, the reliability and stability of these systems have become more 

important than ever. However, transmission lines are constantly exposed to environmental stresses, equipment aging, 

and other external factors, which makes them vulnerable to faults. These faultswhether caused by lightning, insulation 

failure, or mechanical damagecan disrupt power flow, damage infrastructure, and even lead to widespread outages if 

not addressed promptly. 

Detecting and classifying faults accurately and quickly is essential to prevent damage and restore normal operation. 

Conventional protection methods, such as impedance-based relays and model-driven fault analysis, have long been used 

to monitor and respond to faults. While these systems are well-established, they sometimes fall short in terms of speed, 

adaptability, or performance under noisy or uncertain conditionsespecially as power systems become more complex and 

dynamic. 

To address these limitations, researchers and engineers have increasingly turned to intelligent data-driven methods, 

particularly machine learning techniques, for power system monitoring and protection. One such method is the Extreme 

Learning Machine (ELM), a fast and efficient learning algorithm for single-hidden-layer feedforward neural networks. 
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ELM stands out for its rapid training process, minimal parameter tuning, and strong generalization ability, making it an 

excellent candidate for real-time fault detection and classification tasks. 

In this study, we explore the use of ELM to identify and classify different types of faults in high-voltage power 

transmission lines. By analyzing voltage and current signals collected during fault conditions, the model is trained to 

recognize patterns that indicate specific fault types, such as single line-to-ground, line-to-line, and three-phase faults. 

The goal is to create a system that not only delivers high accuracy but also responds quickly enough to support real-

time protective relaying. 

This research aims to demonstrate that integrating ELM into fault detection frameworks can enhance the reliability, 

speed, and precision of power system protection, offering a practical solution for modern smart grids and future energy 

systems. 

 

II. LITERATURE SURVEY 

Md. Omaer Faruq Goni [1] introduced a machine learning-based method for detecting and classifying transmission line 

faults, considering two lines with differing configurations in terms of sources and loads. This approach was evaluated 

against traditional Artificial Neural Networks (ANN), with the proposed model demonstrating improved accuracy and 

faster computation. 

Ozan Turanlı and Yurdagül Benteşen Yakut [2] explored fault classification using a deep learning model based on 

Convolutional Neural Networks (CNN). Their study employed both real-world fault data—sourced from a power 

distribution company—and simulated data generated using Simulink to ensure model robustness across varied 

scenarios. 

Shameem Hasan and Md. Toufikuzzaman [3] employed multiple machine learning techniques, including Neural 

Networks (NN), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM). Among 

these, LightGBM exhibited the best performance in terms of prediction accuracy and efficiency in fault detection and 

classification. 

R. P. Hasabe and A. P. Vaidya[4] presented a hybrid method combining Discrete Wavelet Transform (DWT) and 

neural networks. Features were extracted from current waveforms using DWT and then fed into a neural network for 

effective fault classification. 

Yordanos Dametw Mamuyaet al.[5] proposed a machine learning-based fault location and classification technique 

tailored for radial distribution networks. Their model accounted for both balanced and unbalanced load conditions and 

incorporated discrete wavelet transforms to extract meaningful features from the signal, achieving high accuracy and 

reliability. 

Sruti V. S., Vidhun M., John J. Thanikkal, and JosilyJose[6] developed a fault location model utilizing wavelet 

transform and ANN. Faults were simulated at intervals along a 100 km transmission line, and Clark’s transformation 

was used to decouple voltage and current signals. Daubechies4 wavelet was applied for feature extraction, which were 

then input to an ANN for classification. 

Ömer Özdemir, RaşitKöker, and Nihat Pamuk [7] evaluated several machine learning algorithms—such as Naive 

Bayes, K-Nearest Neighbors (KNN), Decision Trees, SVM, Ensemble methods, and Neural Networks—for fault 

detection, location, and classification. With 67% of the data used for validation and 33% for testing, the neural network 

model achieved a high classification accuracy of 99.97%. 

Lastly, Ligang Tang, Om Prakash Mahela, Baseem Khan, and Yini Miro [8] proposed a method integrating Stockwell 

Transform (ST) and Hilbert Transform (HT) for analyzing fault signals. Their findings indicated superior performance 

of this method over traditional DWT-based and other time–frequency analysis approaches. 

 

III. PROPOSED METHODOLOGY 

This study utilizes the Extreme Learning Machine (ELM) to develop an effective framework for detecting and 

classifying faults in electrical power systems. The proposed approach is outlined in Figure 1. ELM has shown 

promising results in a variety of applications, including fault diagnosis in electrical networks, due to its fast learning 

speed and strong generalization capability. 
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Accurate fault detection and classification are essential for maintaining the safety, reliability, and efficiency of power 

systems. In high-voltage grids, which include critical components such as transformers, generators, and transmission 

lines, identifying faults promptly helps prevent damage and minimize system disruptions. Proper coordination between 

protective devices is also crucial—only the devices nearest to the fault should operate, preventing unnecessary power 

outages across larger sections of the grid. 

Given the complexity of modern power networks, a reliable and fast-responding system is necessary to distinguish 

between different types of faults and trigger appropriate protective actions. This research aims to contribute a robust, 

intelligent solution using ELM that enhances fault identification and supports the stable operation of the power grid. 

 
Fig. 1: Proposed Method for Fault identification and Classification 

The methodology proposed for fault identification and classification in transmission lines follows a structured approach 

that integrates simulation techniques with the capabilities of an Extreme Learning Machine (ELM). The process begins 

by modeling a transmission line in a simulation environment, where various fault scenarios are createdsuch as single 

line-to-ground, line-to-line, double line-to-ground, and three-phase faults. From these simulated events, voltage and 

current signals are collected to represent the system's behavior under different fault conditions. 

Next, relevant features are extracted from the signal data to capture unique patterns associated with each fault type. To 

ensure consistency and improve the learning performance, these features are normalized using Min-Max scaling. The 

refined data is then used to train the ELM model, which is designed to differentiate between normal and faulty 

conditions, as well as accurately classify the specific fault type. 

This approach enables rapid and accurate fault detection, making it highly suitable for real-time protection in power 

systems. By improving the speed and reliability of fault identification, the method contributes to enhanced grid stability 

and more efficient system operation. 

 

IV. SIMULATION MODEL 

In this study, fault identification and classification were carried out using a simulated transmission line model, as 

illustrated in Figure 2. The simulation was conducted using MATLAB Simulink, which provided a flexible 

environment for modeling and analyzing power system behavior. A 150 km long transmission line was modeled, and 
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voltage-current measurement blocks were incorporated to capture the electrical signals during different operating 

conditions. 

To simulate fault scenarios, a dedicated fault b

unsymmetrical faults such as line-to-ground (L

symmetrical faults including three-phase (L

distinct fault types were simulated: A-G, B

For each fault condition, the corresponding voltage and current waveforms were recorded, forming a compr

dataset. This dataset was later used to train the Extreme Learning Machine (ELM) model for accurate fault 

identification and classification. 

Fig. 2: Transmission 

Parameters Detail 

This study models a two-bus power system 

connected by a 150 km transmission line. G1 and G2 have equivalent impedances of 17.177 + j45.529 Ω and 15.31 + 

j45.925 Ω, respectively. The transmission line has positive and zero

12.682 + j364.196 Ω, and sequence admittances of j1.468 m

Circuit breakers are placed at both ends of the line (Bus 1 and Bus 2), and the system operates at 60

frequency of 3.84 kHz. Voltage and current signals are captured using measurement blocks in MATLAB Simulink. 

These signals are normalized and used to train and test the ELM model, with results evaluated using a confusion matrix 

for accurate fault detection and classification.

 

V. E

The Extreme Learning Machine (ELM) is an efficient learning algorithm designed for single

networks (SLFNs). Initially introduced by Huang et al., ELM was developed to address the limitations of traditional 

neural networks, particularly the slow training and convergence issues associated with backpropagation. ELM offers 

fast training speeds, strong generalization capability, and straightforward implementation, making it especially effective 

for real-time applications like fault detection and classification in power systems.

One of the key strengths of ELM lies in its ability to quickly learn complex patterns from input data while maintaining 

high accuracy and low computational cost. These features make ELM a su

and smart grids, where timely and accurate fault identification is crucial.

Structurally, ELM consists of a single hidden layer. Input features are randomly projected into this hidden layer using 

randomly assigned weights and biases. Instead of using time

output weights in one step using the Moore

preserving accuracy. 
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current measurement blocks were incorporated to capture the electrical signals during different operating 

To simulate fault scenarios, a dedicated fault block was used to introduce various types of faults into the system. Both 

ground (L-G), line-to-line (L-L), and double line-to-ground (L

phase (L-L-L) and three-phase-to-ground (L-L-L-G) were generated. In total, eleven 

G, B-G, C-G, A-B, B-C, C-A, A-B-G, B-C-G, C-A-G, A-B-C, and A

For each fault condition, the corresponding voltage and current waveforms were recorded, forming a compr

dataset. This dataset was later used to train the Extreme Learning Machine (ELM) model for accurate fault 

Fig. 2: Transmission line simulation model. 

bus power system with two generators, G1 and G2, rated at 500∠20 kV and 500

 km transmission line. G1 and G2 have equivalent impedances of 17.177 + j45.529 Ω and 15.31 + 

 Ω, respectively. The transmission line has positive and zero-sequence impedances of 4.983 + j117.83

 Ω, and sequence admittances of j1.468 m℧ and j1.099 m℧. 

Circuit breakers are placed at both ends of the line (Bus 1 and Bus 2), and the system operates at 60

Voltage and current signals are captured using measurement blocks in MATLAB Simulink. 

These signals are normalized and used to train and test the ELM model, with results evaluated using a confusion matrix 

for accurate fault detection and classification. 

EXTREME LEARNING MACHINE 

The Extreme Learning Machine (ELM) is an efficient learning algorithm designed for single-layer feedforward neural 

networks (SLFNs). Initially introduced by Huang et al., ELM was developed to address the limitations of traditional 

eural networks, particularly the slow training and convergence issues associated with backpropagation. ELM offers 

fast training speeds, strong generalization capability, and straightforward implementation, making it especially effective 

cations like fault detection and classification in power systems. 

One of the key strengths of ELM lies in its ability to quickly learn complex patterns from input data while maintaining 

high accuracy and low computational cost. These features make ELM a suitable solution for modern power networks 

and smart grids, where timely and accurate fault identification is crucial. 

Structurally, ELM consists of a single hidden layer. Input features are randomly projected into this hidden layer using 

weights and biases. Instead of using time-consuming iterative training methods, ELM calculates the 

output weights in one step using the Moore–Penrose pseudo-inverse. This significantly reduces training time while 
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current measurement blocks were incorporated to capture the electrical signals during different operating 

lock was used to introduce various types of faults into the system. Both 

ground (L-L-G) and 

G) were generated. In total, eleven 

C, and A-B-C-G. 

For each fault condition, the corresponding voltage and current waveforms were recorded, forming a comprehensive 

dataset. This dataset was later used to train the Extreme Learning Machine (ELM) model for accurate fault 

 

 kV and 500∠0 kV, and 

 km transmission line. G1 and G2 have equivalent impedances of 17.177 + j45.529 Ω and 15.31 + 

ce impedances of 4.983 + j117.83 Ω and 

Circuit breakers are placed at both ends of the line (Bus 1 and Bus 2), and the system operates at 60 Hz with a sampling 

Voltage and current signals are captured using measurement blocks in MATLAB Simulink. 

These signals are normalized and used to train and test the ELM model, with results evaluated using a confusion matrix 

layer feedforward neural 

networks (SLFNs). Initially introduced by Huang et al., ELM was developed to address the limitations of traditional 

eural networks, particularly the slow training and convergence issues associated with backpropagation. ELM offers 

fast training speeds, strong generalization capability, and straightforward implementation, making it especially effective 

One of the key strengths of ELM lies in its ability to quickly learn complex patterns from input data while maintaining 

itable solution for modern power networks 

Structurally, ELM consists of a single hidden layer. Input features are randomly projected into this hidden layer using 

consuming iterative training methods, ELM calculates the 

inverse. This significantly reduces training time while 
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For a dataset with N samples, each having n features, the inputs are passed through L hidden neurons using an 

activation function such as sigmoid, sine, or radial basis. The resulting outputs from the hidden layer form a matrix H. 

The final output weights (β) are computed using: 

  β = H†T   (Equation 1) 

Here, H† represents the pseudo-inverse of the hidden layer output matrix, and T is the matrix of target outputs. This 

direct, analytical approach eliminates the need for iterative learning, making ELM a fast and effective tool for real-time 

fault classification. 

 
Fig. 3: ELM classifier structure 

In this research, the Extreme Learning Machine (ELM) is applied to detect and classify eleven types of transmission 

line faults using MATLAB. Voltage and current waveforms are simulated under realistic fault conditions, incorporating 

transient disturbances and noise to create a comprehensive and diverse dataset. The simulated faults include A-G, B-G, 

C-G, A-B, B-C, C-A, A-B-G, B-C-G, C-A-G, A-B-C, and A-B-C-Grepresenting various categories such as L-G, L-L, 

L-L-G, and L-L-L faults. These scenarios are modeled using the setup shown in Figure 2, with fault conditions 

generated at every 10 km along the transmission line. Variations in fault resistance (ranging from 0Ω to 50Ω) and fault 

inception angles (from 0° to 180° in 30° steps) are also considered to enhance the robustness of the dataset. 

Before training, the voltage and current signals are normalized using Min-Max scaling to ensure consistency and 

improve the learning performance of the model. The ELM is then trained using 30% of the normalized dataset, while 

the remaining 70% is used to test and validate the model’s classification accuracy. Input weights are randomly 

assigned, and output weights are calculated analytically, allowing for rapid and efficient training. The performance of 

the model is evaluated using confusion matrices and classification metrics, confirming its effectiveness in accurately 

identifying and classifying faults in transmission lines. 
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VI. COMPARATIVE TABLE: ELM, ANN AND SVM 

Sr. No. Aspect 
ELM (Extreme 

Learning Machine) 

ANN (Artificial Neural 

Network) 

SVM (Support Vector 

Machine) 

1 Model Type 
Single hidden-layer 

feedforward network 

Multi-layer neural 

network (can be shallow 

or deep) 

Geometric classifier based 

on separating hyperplanes 

2 
Training 

Approach 

Randomly initializes 

input weights; solves 

output weights 

analytically (no loops) 

Uses backpropagation to 

adjust weights iteratively 

over many epochs 

Solves an optimization 

problem to maximize the 

margin between classes 

3 
Speed of 

Training 

Extremely fast—usually 

needs only one pass 

Slow—can take hours or 

days for deep networks 

Moderate—faster than 

deep ANN, slower than 

ELM 

4 Accuracy 

Good on many tasks but 

depends on hidden nodes 

and data quality 

High accuracy if 

properly trained and 

regularized 

Excellent on small to 

medium-sized datasets, 

especially with proper 

kernel 

5 Scalability 

Limited by memory 

(matrix inversion); best 

for small/medium 

datasets 

Scales well with large 

datasets (especially using 

GPUs) 

Struggles with very large 

datasets due to kernel 

matrix 

6 Complexity 
Simple architecture and 

logic 

Flexible and complex—

supports deep and wide 

configurations 

Mathematically 

sophisticated but 

conceptually clean 

7 Flexibility 
Limited (one hidden 

layer only) 

Very flexible—can 

model highly nonlinear 

and complex 

relationships 

Somewhat limited to 

classification and 

regression unless 

modified 

8 Use of Kernels 
Not by default (kernel 

ELM variants exist) 

Not kernel-based (but 

nonlinearities handled 

via activation functions) 

Strong kernel support 

(linear, RBF, polynomial, 

sigmoid) 

9 
Hyperparameter 

Tuning 

Minimal (only number of 

hidden neurons, 

activation function) 

Extensive—layers, units, 

learning rate, batch size, 

optimizer, etc. 

Requires tuning of kernel, 

penalty parameter (C), 

gamma (for RBF) 

10 Memory Usage 

Moderate—needs to store 

hidden layer matrix and 

pseudo-inverse 

High—especially for 

deep networks and large 

batch sizes 

Can be high (especially 

with nonlinear kernels 

and large feature sets) 

11 Interpretability 

Low to moderate—hard 

to explain specific 

neuron behavior 

Low—often treated as a 

“black box” 

Moderate to high—

especially for linear 

SVMs, where the 

hyperplane can be 

visualized 

12 Overfitting Risk 
Can overfit with too 

many hidden neurons 

High if not properly 

regularized (dropout, L2, 

etc.) 

Low—good 

generalization due to 

margin maximization 

13 
Online/Real-

time Use 

Very suitable due to fast 

training and update 

Not ideal—training is 

too slow for real-time 

Possible with linear SVM; 

not ideal for online 



 

 

               International Journal of Advanced 

                               International Open-Access, Double

 Copyright to IJARSCT         
    www.ijarsct.co.in 

 

ISSN: 2581-9429 

capability

14 
Best Application 

Areas 

Real-time systems, 

embedded AI, rapid 

prototyping

15 
Multiclass 

Handling 

Supports 

naturally

 

Output Waveforms 

The transmission line model was simulated under several operating conditions to analyze its 

These conditions include a healthy system (no fault), as well as various types of faults: single line

line-to-line (L-L), double line-to-ground (L

G). 

Figure 4 illustrates the voltage and current waveforms for the system operating under normal (healthy) conditions. As 

expected, the signals are smooth and undisturbed, indicating stable system performance.

Figures 5 through 9 depict the system's response under different fault scenarios. Both asymmetrical faults (L

L-G) and symmetrical faults (L-L-L and L

from 0.1 seconds to 0.2 seconds. During this window, noticea

waveforms. 

Although some faults may initially occur on a single phase, their impact often propagates across all phases, leading to 

widespread waveform distortion. If not addressed promptly, such disturbanc

highlights the critical need for fast and well

isolate only the affected parts of the network to ensure that the remaining healthy sections c
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capability updates learning 

time systems, 

embedded AI, rapid 

prototyping 

Deep learning tasks: 

vision, audio, language 

Text classification, 

bioinformatics, fraud 

detection

Supports multiclass 

naturally 

Native support through 

softmax or multiple 

outputs 

Not native

vs-one or one

strategy 

VII. RESULTS 

The transmission line model was simulated under several operating conditions to analyze its behavior during faults. 

These conditions include a healthy system (no fault), as well as various types of faults: single line

ground (L-L-G), three-phase fault (L-L-L), and a three-phase-to-ground fault (

Figure 4 illustrates the voltage and current waveforms for the system operating under normal (healthy) conditions. As 

expected, the signals are smooth and undisturbed, indicating stable system performance. 

response under different fault scenarios. Both asymmetrical faults (L

L and L-L-L-G) were simulated. The faults were introduced during the time interval 

from 0.1 seconds to 0.2 seconds. During this window, noticeable disturbances appear in the voltage and current 

Although some faults may initially occur on a single phase, their impact often propagates across all phases, leading to 

widespread waveform distortion. If not addressed promptly, such disturbances can severely affect system stability. This 

highlights the critical need for fast and well-coordinated protective mechanisms. Efficient protection systems must 

isolate only the affected parts of the network to ensure that the remaining healthy sections continue operating reliably.

Fig. 4: Healthy system. 
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Text classification, 

bioinformatics, fraud 

detection 

Not native—requires one-

one or one-vs-all 

 

behavior during faults. 

These conditions include a healthy system (no fault), as well as various types of faults: single line-to-ground (L-G), 

ground fault (L-L-L-

Figure 4 illustrates the voltage and current waveforms for the system operating under normal (healthy) conditions. As 

response under different fault scenarios. Both asymmetrical faults (L-G, L-L, L-

G) were simulated. The faults were introduced during the time interval 

ble disturbances appear in the voltage and current 

Although some faults may initially occur on a single phase, their impact often propagates across all phases, leading to 

es can severely affect system stability. This 

coordinated protective mechanisms. Efficient protection systems must 

ontinue operating reliably. 
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A-G fault: 

Fig. 5: Unsymmetrical fault: Line

A-B Fault: 

Fig. 6: Unsymmetrical fault: Line

A-B-G fault: 

Fig. 7: Unsymmetrical fault: Line
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ig. 5: Unsymmetrical fault: Line-Ground fault. (A phase- Ground). 

Fig. 6: Unsymmetrical fault: Line-Line fault. (A phase- B phase). 

Fig. 7: Unsymmetrical fault: Line-Line-Ground fault. (A phase-B phase-Ground).
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A-B-C fault:  

Fig. 8: Symmetrical fault: Line

 

A-B-C-G fault: 

Fig. 9: Symmetrical fault: Line

 

Fault Identification& Classification 

The proposed model was thoroughly tested using fault data obtained from simulations involving both symmetrical and 

unsymmetrical fault conditions within the transmission system. The objective w

accurately classifying and detecting various types of faults.

To assess classification performance, a confusion matrix was generated using all test samples, as shown in Figure 13. 

The model achieved a remarkable 100% accuracy, successfully identifying each type of fault without any errors. This 

highlights the robustness and reliability of the implemented Extreme Learning Machine (ELM) model in handling 

complex fault scenarios. 

To further validate the classification performance, Receiver Operating Characteristic (ROC) curves were plotted for 

each fault class, as illustrated in Figure 10. These curves display the relationship between the true positive rate and the 

false positive rate across different threshold values. F
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Fig. 8: Symmetrical fault: Line-Line-Line fault. (A phase- B phase-C phase). 

Fig. 9: Symmetrical fault: Line-Line-Line-Ground fault. (A phase-B phase-C phase-Ground).

The proposed model was thoroughly tested using fault data obtained from simulations involving both symmetrical and 

unsymmetrical fault conditions within the transmission system. The objective was to evaluate the model’s capability in 

accurately classifying and detecting various types of faults. 

To assess classification performance, a confusion matrix was generated using all test samples, as shown in Figure 13. 

% accuracy, successfully identifying each type of fault without any errors. This 

highlights the robustness and reliability of the implemented Extreme Learning Machine (ELM) model in handling 

erformance, Receiver Operating Characteristic (ROC) curves were plotted for 

each fault class, as illustrated in Figure 10. These curves display the relationship between the true positive rate and the 

false positive rate across different threshold values. For all fault categories, the ROC curves yielded an Area Under the 
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Ground). 

The proposed model was thoroughly tested using fault data obtained from simulations involving both symmetrical and 

as to evaluate the model’s capability in 

To assess classification performance, a confusion matrix was generated using all test samples, as shown in Figure 13. 

% accuracy, successfully identifying each type of fault without any errors. This 

highlights the robustness and reliability of the implemented Extreme Learning Machine (ELM) model in handling 
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Curve (AUC) of 100%, indicating perfect discrimination between fault classes and confirming the high effectiveness of 

the classification model. 

In addition to classifying faults, the model w

fault has occurred in the system. The detection performance results are summarized in the fault detection table (see 
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In addition to classifying faults, the model was also evaluated for fault detection—that is, identifying whether or not a 

fault has occurred in the system. The detection performance results are summarized in the fault detection table (see 

Figure). Once again, the ROC curve for fault detection, shown in Figure 11, achieved an AUC of 100%, demonstrating 

the model’s exceptional accuracy in distinguishing between healthy and faulty system states. 

These results confirm that the proposed ELM-based model not only classifies different fault types with high pre

but also reliably detects the occurrence of faults, making it a valuable tool for real-time power system monitoring and 
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Fig. 13: Confusion matrix for fault classification 

 

VIII. CONCLUSION 

Protecting transmission lines from faults is a critical aspect of ensuring the stability and reliability of power systems. 

Effective coordination among protective devices is essential to isolate only the faulty sections of the grid, preventing 

unnecessary outages and minimizing disruption across the network. 

In this study, a comprehensive analysis was conducted by simulating both unsymmetrical faultssuch as line-to-ground 

(L-G), line-to-line (L-L), and double line-to-ground (L-L-G)and symmetrical faults including line-to-line-to-line (L-L-

L) and line-to-line-to-line-to-ground (L-L-L-G). A total of 11 distinct fault types were modelled: A-G, B-G, C-G, A-B, 

B-C, C-A, A-B-G, B-C-G, C-A-G, A-B-C, and A-B-C-G.The Extreme Learning Machine (ELM) was employed for 

fault detection and classification. Results demonstrate that ELM provides rapid and accurate classification, making it a 

promising solution for real-time fault analysis in power systems. Its high computational efficiency and learning speed 

make it particularly suitable for large-scale grid monitoring. 

In summary, the ELM-based approach offers a reliable and intelligent method for enhancing fault diagnosis and 

improving the resilience of transmission networks. With further development, this method has strong potential for 

broader application across power system protection schemes and fault management systems. 
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