
I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 7, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26866 582

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

Blockchain Based Voting System
Prateek Saraswat, Mohit Singh, Kanishka Goswami, Devansh Singhal

CSE (Data Science)

Raj Kumar Goel Institute of Technology, Ghaziabad

09qeprateek@gmail.com, mohit7042singh@gmail.com

Kanishkgoswami12@gmail.com, Devansh06032003@gmail.com

Abstract: In recent years, the integrity and transparency of electoral processes have come under

increased scrutiny. Traditional voting systems, whether paper-based or electronic, often face challenges

related to security, voter fraud , data manipulation, and lack of trust. Blockchain technology, known for

its decentralized, immutable, and transparent nature, offers a promising solution to these issues. This

paper proposes a blockchain-based voting system that ensures secure, transparent, and tamper-proof

elections. Utilizing smart contracts and cryptographic techniques, the system enables secure voter

authentication, anonymity, and real-time vote tallying, while ensuring that all votes are recorded

immutably on a distributed ledger. The proposed system enhances voter confidence, reduces the risk of

manipulation, and supports remote voting without compromising security. This approach has the

potential to revolutionize democratic participation by providing a trustworthy and efficient electoral

process.

Keywords: Blockchain, Voting System, Java, JavaFX, Decentralized Ledger, Secure Elections

I. INTRODUCTION

The democratic process is based essentially on free, fair, and transparent elections. Conventional voting systems,

whether paper-based or electronic, have long been plagued by issues such as tampering, delay in counting, non-

transparency, and lack of accessibility. Electronic Voting Machines (EVMs) that are now used in the majority of

countries are criticized for being vulnerable to physical tampering and clerical errors, while paper ballot processes

entail high expenditures, complexity, and inefficiency in manual counting.

As digital technologies advance, there is an urgent need for more secure and efficient voting systems. Blockchain

technology has been touted as a viable solution because of its inherent characteristics: decentralization, immutability,

and transparency. A blockchain is a linear chain of blocks, with each block having data and a cryptographic hash of the

previous block, so that no historical data can be modified without making the entire chain invalid. This structure

naturally resists tampering and fosters trust among participants.

In this project, we are suggesting a blockchain voting system implemented with Java and JavaFX, but without relying

on smart contracts or external blockchain platforms. The system emulates blockchain behavior by linking blocks of

voting data with cryptographic hashing and secure time-stamping. It ensures that once voted, it will be permanently

stored in a manner that cannot be changed without notice.

Our system meets a number of the most critical challenges of traditional voting systems:

Avoiding double voting.

Protecting vote integrity and transparency.

Facilitating secure and anonymous voting procedures.

Minimizing the cost and logistics of elections in general.

Using basic blockchain principles without the overcomplication of smart contracts, this model presents a lightweight,

easy-to-understand framework well-suited to educational, institutional, or small-scale democratic applications.

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 7, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26866 583

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

Motivation

The inspiration for this project arises from the growing demand for secure, open, and reliable voting systems in the

digital age. Elections are the cornerstone of any democracy, yet the past few years have identified wide gaps in current

voting systems—from claims of electoral manipulation and fraud to reduced access for some voters.

Mechanical paper-based electoral systems are frequently slow, costly, and error-prone due to human interference,

whereas Electronic Voting Machines (EVMs), as much more contemporary a system, are still vulnerable to physical

manipulation and are non-audit-able. Such limitations create uncertainty among the general populace, diminish the

confidence of the voters, and undermine the legitimacy of democratic processes.

Blockchain technology, with its own characteristics of immutability, decentralization, and transparency, offers a strong

alternative. While widely linked to cryptocurrencies, its applicability in other areas—such as voting—is increasingly

being realized. A voting system based on blockchain can guarantee that once a vote is made, it is safely stored and

cannot be altered or erased, thus maintaining electoral integrity.

This project intends to emulate the fundamental concepts of blockchain to show how records of votes can be safely

stored without the need for third-party infrastructure or intricate smart contracts. Using the system on Java and JavaFX,

we make it available and easy to comprehend, thereby making it a feasible teaching aid and proof of concept for

institutional voting applications like college elections, organizational surveys, or local community decision-making.

Our mission is to demonstrate a proof-of-concept that illustrates how technology can bring about trust in voting systems

by increasing their security, efficiency, and ease of use—particularly for remote and digitally networked citizens.

Objectives

The main purpose of this project is to plan and develop an secure, open, and tamper-evident voting system based on the

fundamental principles of blockchain technology—without relying on smart contracts. Through Java-based simulation

of blockchain behavior, the system hopes to increase the trust, usability, and integrity of the election process, especially

for small-scale or institutional elections.

The major aims are:

1. To Ensure Vote Integrity

Ensure that each vote is stored permanently and cannot be altered, deleted, or manipulated, thus maintaining the

integrity of the election process.

2. To Simulate Blockchain Functionality

Use blockchain-like functionality like chaining of data blocks and cryptographic hashing in Java, without depending on

actual blockchain platforms or smart contracts.

3. To Prevent Double Voting

Use mechanisms that enable each user to vote once, maintaining fairness and accuracy.

4. To Maintain Voter Anonymity

Make sure that although every vote is registered and auditable, the voter's identity is kept confidential to ensure privacy.

5. To Improve Transparency and Auditability

Make the whole voting and result calculation process auditable so that administrators and voters have confidence in the

results.

6. To Simplify Election Management

Offer an admin interface for voter management, election initiation, and result tracking, thus lessening reliance on

manual operations.

7. To Enhance Accessibility and Usability

Develop a simple user interface through JavaFX so that the system can be easy to use even for less-technical users.

8. To Cut Election Expenses and Resources

Provide a virtual option that reduces the demand for tangible resources such as polling stations, paper ballots, and staff.

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 7, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26866 584

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

II. SYSTEM ARCHITECTURE

1. User Interface (UI) - JavaFX

Role: The user interface (UI) is developed using JavaFX, which offers a rich set of tools for building graphical

interfaces in Java. It enables you to build windows, buttons, tables, forms, and other interactive elements.

Components:

 Controllers: JavaFX uses the MVC (Model-View-Controller) pattern, where the view (UI) is decoupled from

the logic (Model). The controllers handle user input, update the view, and communicate with the back-end

services.

 FXML: You can declare the UI layout using FXML, an XML-based format. This enables you to decouple the

UI from the code logic.

 Scene Graph: JavaFX scene graph is utilized to position UI elements, i.e., buttons, labels, text fields, etc., in a

tree form for simple layout management.

2. Backend Logic - Java

Role: Java is responsible for the application's core logic, i.e., blockchain operations, transactions, and database.

Blockchain Implementation:

The blockchain can be implemented in Java with the help of custom classes that mimic block generation, transactions,

and chaining.

Smart contracts (in Solidity) can talk to the blockchain but must be incorporated through Web3j or an equivalent Java

library.

Blockchain Functions:

 Block: Every block has a collection of transactions, the hash of the previous block, and its hash.

 Chain: The blocks are connected, and they make up a chain. Every new block has the hash of the old block to

keep the whole chain intact.

 Consensus Mechanism: You could use a simple consensus mechanism to confirm transactions (proof-of-work

or a simpler one depending on your needs).

 Smart Contract Interaction: Smart contracts, programmed in Solidity, communicate with the blockchain

network. Through libraries such as Web3j, Java can communicate with the Ethereum blockchain to install and

run smart contracts.

3. Database - SQLite

Role: SQLite persists application data. It's a serverless, lightweight, and self-contained relational database engine.

Integration:

 SQLite Driver: You can use an SQLite JDBC driver to access the database from Java. The driver enables you

to create tables, insert, update, delete records, and execute SQL queries.

 Database Structure: SQLite might be employed in a blockchain application for storing metadata related to

blocks, transactions, and user data. Though the chain and the transactions are stored within the blockchain

itself, SQLite would be more appropriate for storing user-specific information (such as wallet addresses,

authentication).

Database Operations

When an action is performed by a user (e.g., voting), the transaction is recorded in the blockchain and may also be

stored in the SQLite database for historical purposes, user management, etc.

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 7, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26866 585

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

4. Workflow Overview

1. UI Layer (JavaFX):

 The user interacts with the UI, e.g., login, voting, transaction history, etc.

 JavaFX talks to the backend to get the corresponding actions.

2. Backend Layer (Java):

 When a user makes an action, the backend processes it. If it's an action related to blockchain (e.g., voting),

Java will form a transaction, verify it, and include it in the blockchain.

 Blockchain logic verifies the transaction through the consensus mechanism and adds it to the chain.

 The smart contract (if used) runs and sends back the output.

3. Database Layer (SQLite):

 SQLite holds all user-specific data or metadata, like login credentials of a user, transaction records, or other

context-specific application data.

 The database is persisted as the application takes actions to ensure persistence of data across sessions.

4. Transaction Flow (Example: Voting System)

 User Interaction (JavaFX): A user accesses the voting page in the UI.

 Backend Logic (Java): The system verifies whether the user is qualified to vote, fetches the candidates

available, and enables the user to vote.

 Blockchain (Java): The vote is considered a transaction in the blockchain. A new block is formed with the

voting details and appended to the chain.

 Database (SQLite): The system records the vote of the user and updates the database for tracking.

 Smart Contract (Solidity): In case the blockchain contains a smart contract, it will be invoked to validate or

process the vote.

 Confirmation (JavaFX): The user gets confirmation within the UI that the vote succeeded.

5. Security Considerations

 Blockchain Security: The blockchain guarantees that once a transaction (such as a vote) has been added, it's

tamper-proof and traceable because of the cryptographic hash functions employed.

 Database Security: As SQLite holds sensitive information, ensure there is proper encryption and secure

management of user credentials and other personal information.

 Smart Contract Security: In case of using smart contracts, make sure they are well audited to avoid issues like

reentrancy attacks or overflow problems.

III. IMPLEMENTATION DETAILS

3.1 JavaFX UI Component

- Login Screen (Voter Authentication)

 International Journal of Advanced

 International Open-Access, Double

 Copyright to IJARSCT
 www.ijarsct.co.in

ISSN: 2581-9429

- Voting Dashboard

3.2 Java Backend Components

- Blockchain Structure

The Block class is an instance of a piece of data on the blockchain. A block carries the following attributes:

Block Class

 Data: This is what the block contains, which could be encrypted ballots or voting information in the context of

a voting system.

 Previous Hash: The hash of the previous block using cryptography, thereby creating a reference between

blocks.

 Hash: A unique identifier of the current block, calculated with the SHA

 Timestamp: The creation time of the block, thereby allowing chronological ordering.

I J A R S C T

International Journal of Advanced Research in Science, Communication and

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 7, May 2025

 DOI: 10.48175/IJARSCT-26866

The Block class is an instance of a piece of data on the blockchain. A block carries the following attributes:

Data: This is what the block contains, which could be encrypted ballots or voting information in the context of

Previous Hash: The hash of the previous block using cryptography, thereby creating a reference between

dentifier of the current block, calculated with the SHA-256 hashing function.

The creation time of the block, thereby allowing chronological ordering.

, Communication and Technology

Reviewed, Refereed, Multidisciplinary Online Journal

 586

Impact Factor: 7.67

The Block class is an instance of a piece of data on the blockchain. A block carries the following attributes:

Data: This is what the block contains, which could be encrypted ballots or voting information in the context of

Previous Hash: The hash of the previous block using cryptography, thereby creating a reference between

256 hashing function.

The creation time of the block, thereby allowing chronological ordering.

 International Journal of Advanced

 International Open-Access, Double

 Copyright to IJARSCT
 www.ijarsct.co.in

ISSN: 2581-9429

Blockchain Class

The Blockchain class is the ledger that holds an ordered sequence of blocks. Internally, it has an ArrayList holding the

sequence of blocks:

addBlock(Block block): This function adds a new block to the chain.

getChain(): This function returns the current

-Voting System

The Voting System class consolidates two main pieces:

Blockchain Ledger: A distributed ledger through the Blockchain class, in which all vote history is stored safely in

cryptographically chained blocks.

Registered Voter List: An aggregate of valid voters kept in a list of Voter objects, which enforces that o

persons are able to vote in the election.

I J A R S C T

International Journal of Advanced Research in Science, Communication and

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 7, May 2025

 DOI: 10.48175/IJARSCT-26866

The Blockchain class is the ledger that holds an ordered sequence of blocks. Internally, it has an ArrayList holding the

addBlock(Block block): This function adds a new block to the chain.

(): This function returns the current blockchain state, with exposure to the whole sequence of blocks recorded.

The Voting System class consolidates two main pieces:

Blockchain Ledger: A distributed ledger through the Blockchain class, in which all vote history is stored safely in

Registered Voter List: An aggregate of valid voters kept in a list of Voter objects, which enforces that o

, Communication and Technology

Reviewed, Refereed, Multidisciplinary Online Journal

 587

Impact Factor: 7.67

The Blockchain class is the ledger that holds an ordered sequence of blocks. Internally, it has an ArrayList holding the

blockchain state, with exposure to the whole sequence of blocks recorded.

Blockchain Ledger: A distributed ledger through the Blockchain class, in which all vote history is stored safely in

Registered Voter List: An aggregate of valid voters kept in a list of Voter objects, which enforces that only eligible

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 7, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26866 588

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

IV. SECURITY AND PRIVACY ISSUES

Security and privacy are the pillars of any electoral system. Although blockchain provides a basis of immutability and

openness, the system needs to be implemented with caution so that it stays secure from threats while being anonymized.

This Java-built project, which also incorporates JavaFX and SQLite, deals with a number of security and privacy issues,

though some limitations are unavoidable due to its simulated nature.

4.1 Data Integrity and Tamper Detection

Every vote in the system is considered a block, containing a timestamp, candidate ID, anonymized voter ID, and a

SHA-256 hash referencing the previous block. This hash chaining makes it such that:

- Any change to a prior vote instantly breaks the hash chain.

- Tampering becomes traceable via hash verification.

- This structure ensures data immutability, an essential requirement for secure voting.

4.2 Authentication and Authorization

Role-Based Access: Functionality is limited by roles (voter or admin), reducing unauthorized access.

Login System: Admins and voters need to log in with credentials safely stored in SQLite. This does not allow external

users to vote or access administrative features.

Single Vote Enforcement: The system guarantees that a voter can only cast one vote, monitored in the database and

checked before granting access to the voting panel.

4.3 Voter Anonymity

Though vote data is kept and presented to be transparent, the voter's identity is anonymized by:

- Using internal IDs rather than personal identifiers.

- Blockchain blocks that do not hold identifiable information directly.

- This way, votes cannot be traced back to individuals without violating their privacy while ensuring system

auditability.

4.4 Database Security

Although SQLite is light and suitable for prototypes, it does have some limitations regarding encryption and multi-user

security:

- Local File Storage: SQLite stores data within a local file that may be at risk if not secured through OS-level

permissions or encryption.

- No Network-Level Security: As the database is not hosted by a server, there is no inherent protection against network

attacks such as SQL injection or sniffing. This is addressed by input sanitization and limiting access to the application

level.

4.5 Risks and Limitations

Even with the security controls in place, the system has some limitations:

No End-to-End Encryption: Contrary to actual blockchain implementations, this project lacks encryption from user

input to data storage, which may pose a threat when scaled up.

Centralized Storage: Although integrity is added in simulation through blockchain, real-world storage is centralized

using SQLite, presenting a point of failure.

No Biometric or 2FA Authentication: The existing login system relies only on passwords, which can be vulnerable to

brute-force or credential steal attacks.

4.6 Recommendations for Increased Security

To further enhance the system, the following enhancements are suggested for future development:

- Utilization of encrypted databases or external secure servers.

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 7, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26866 589

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

- Two-factor authentication (2FA) for login.

- Encrypt votes prior to storage, even in hashed form.

- Migration to decentralized blockchain platforms for real-time integrity and network-level trust.

- Regular audits and hash checks to verify vote chain integrity.

V. CHALLENGES AND SOLUTIONS

Development and deployment of a blockchain voting system pose some technical, operational, and user-oriented

challenges. Although the project uses Java, JavaFX, and SQLite to mimic blockchain operations, there are tremendous

challenges in attaining solid performance, security, and usability. The following are the major challenges faced and the

solutions or mitigation measures employed:

5.1 Challenge: Lack of True Decentralization

Problem:

Actual blockchain systems function in a decentralized framework where more than one node verifies and maintains the

ledger. This simulation employs a centralized scheme, which can't possibly reflect blockchain's distributed-based

nature.

Solution:

To mimic decentralization, the system employs immutable hash chaining and locally stores every vote block

sequentially. While not actually decentralized, this replicates the tamper-proof aspect of a blockchain and is an

educational model. Networked nodes or integration with platforms such as Hyperledger could be included in future

development.

5.2 Challenge: Ensuring Vote Anonymity

Problem:

Maintaining voter anonymity while having verifiable election results is essential. Directly linking votes to user

information threatens anonymity.

Solution:

The system anonymizes the voter data prior to supplementing vote data on the blockchain. Every block contains only

necessary, non-identifiable details (e.g., timestamp of the vote, candidate ID) and employs internal IDs in order to avoid

disclosing identity.

5.3 Challenge: Double Voting Prevention

Problem:

A user may try to vote twice, particularly in electronic systems without strong ID verification.

Solution:

The system maintains the voting status of every user in the SQLite database. After a vote is cast, the record of the voter

is flagged, and subsequent attempts are prevented at the application level.

5.4 Challenge: Database Vulnerability

Problem:

SQLite, though light, does not have native encryption and is exposed if the local machine is compromised.

Solution:

Application-level security is implemented with access restrictions, hashed passwords, and file-level OS protection.

Future improvements may include encrypted databases or migration to secure server-based storage.

5.5 Challenge: Limited User Technical Literacy

Problem:

Some voters may not be familiar with digital systems, leading to confusion or errors during voting.

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 7, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26866 590

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

Solution:

A JavaFX interface that is simple and easy to understand is employed for simplicity. The interface has easy-to-follow

instructions, guided processes, and validation of errors to enhance the user experience.

5.6 Challenge: No Live Network Validation

Problem:

An actual blockchain network provides consensus mechanisms to confirm entries, something that does not exist in the

simulation here.

Solution:

Although consensus protocols (such as Proof-of-Work or Proof-of-Stake) are not used, the protocol is based on local

verification and hash verification to guarantee block integrity. This model is appropriate for proofs of concept on the

blockchain at a prototype level.

5.7 Challenge: Timing Delayed Result Accuracy and Real-Time Monitoring

Problem:

Manual vote tallying or insecure tallying mechanisms can lead to inaccuracy or timing issues.

Solution:

The system carries out real-time tallying of votes with data consistency verification between the database records and

blockchain ledger. Results are obtainable immediately once voting closes, minimizing delays.

VI. FUTURE WORK

Although the existing implementation of the blockchain-based election system gives a working example of secure and

tamper-free elections with Java, JavaFX, and SQLite, there is vast room for improvement. Future work and research

activities can focus on removing current constraints and enhancing system capabilities for more extensive usage and

scalability. Some important areas of future work are:

6.1 Integration with Real Blockchain Networks

The current model emulates blockchain with hash-linked data structures. Future releases may incorporate actual

blockchain platforms like:

- Hyperledger Fabric for permissioned networks for governmental use.

- Ethereum in case of later reintroduction with support for smart contracts.

- This would enable actual decentralization, distributed consensus, and secure networked transactions.

6.2 Advanced Cryptographic Techniques Implementation

Data security and anonymity of users can be strengthened with:

- Zero-Knowledge Proofs (ZKPs) to authenticate votes without disclosing the identity of the user.

- Elliptic Curve Cryptography (ECC) for secure, lightweight encryption.

- Homomorphic encryption for vote tallying without decrypting votes.

6.3 Biometric and Multi-Factor Authentication

In order to enhance user authentication, the future systems can include:

- Biometric authentication (fingerprint or facial recognition).

- Two-factor authentication based on OTPs or email-based codes.

This would improve identity verification without affecting user experience.

6.4 Mobile Application Development

Creating a mobile app for Android and iOS operating systems using technologies such as Kotlin, React Native, or

Flutter would:

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 7, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26866 591

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

- Make it more accessible, particularly in remote locations.

- Promote wider usage among youth and technology-savvy voters.

6.5 Cloud and Distributed Hosting

Running the system over a cloud-based platform (e.g., AWS, Google Cloud, Azure) could:

- Enable large-scale elections.

- Increase availability, scalability, and fault tolerance.

- Facilitate remote backups and real-time data synchronization.

6.6 Government and Legal Integration

Subsequent versions must comply with:

- National election commission regulations

- Data privacy laws (e.g., GDPR, IT Act).

- Digital signature legislation to facilitate legal acceptance of digital votes.

6.7 Usability Testing and Voter Education

One of the most important features of real-world deployment is that:

- The system is accessible for all age groups.

- Citizens are properly educated on digital voting.

- Future releases may incorporate interactive tutorials, FAQs, and demo platforms to enhance digital literacy and

uptake.

6.8 Real-Time Monitoring and Analytics

Adding dashboards for:

- Live tracking of turnout.

¬- Vote analytics by candidate.

Geographic heat maps of votes based on anonymized data.

This would increase transparency in elections and administrative decision-making.

VII. CONCLUSION

This project investigates the creation of a blockchain-based voting system aimed at securing electoral processes,

increasing transparency, and improving efficiency. Using Java for core logic implementation and simulating the

blockchain, JavaFX for an interactive graphical user interface, and SQLite for lightweight but reliable data storage, the

system offers a robust proof-of-concept for secure digital voting. The basic blockchain principles—such as

immutability, hashing, and block chaining—are replicated successfully to preclude vote tampering and enable

traceability of votes.

The system overcomes significant weaknesses of conventional and electronic voting systems, including susceptibility to

manipulation, absence of transparency, high cost of operation, and inaccessibility. The data of voters is secured using

cryptography methods, while the integrity of the election process is ensured through imposing one vote per user and

ensuring that each vote is tamper-proof recorded. While the system is yet to use smart contracts or total network

decentralization, it does set a strong groundwork for upcoming advancements and application in the real world.

This study also points to the significance of establishing trust in electoral systems using technology. Through the

simulation of blockchain behavior even within a centralized system, the project illustrates how verifiable and

transparent elections can be performed online. Additionally, the system can accommodate remote voting, thus making it

more accessible to individuals with physical disabilities, those located far away from the city or town, or citizens

abroad.

In summary, the suggested blockchain-based voting system is an important milestone toward reimagining election

processes in the modern digital age. Not only does it enhance the integrity and effectiveness of voting, but also

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 7, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26866 592

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

enhances voter engagement and confidence. Integration with existing decentralized blockchain networks in the future,

biometrics, and mobile applications may produce a scalable, production-grade solution for conducting mass-scale,

nationwide elections.

REFERENCES

[1]. Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. https://bitcoin.org/bitcoin.pdf

[2]. Zheng, Z., Xie, S., Dai, H., Chen, X., & Wang, H. (2018). An Overview of Blockchain Technology:

Architecture, Consensus, and Future Trends. IEEE Congress on Big Data, 557–564.

[3]. Crosby, M., Pattanayak, P., Verma, S., & Kalyanaraman, V. (2016). Blockchain Technology: Beyond

Bitcoin. Applied Innovation Review, 2, 6–10.

[4]. Christin, N. (2020). The Future of Secure Voting: Blockchain and Beyond. Communications of the ACM,

63(4), 28–30.

[5]. Sharma, T., & Agarwal, R. (2019). Blockchain Technology in E-Governance and Voting. International

Journal of Computer Applications, 178(7), 1–4.

[6]. Yavuz, E., Koç, A. K., Çabuk, U. C., &Dalkılıç, G. (2018). Towards Secure E-Voting Using Ethereum

Blockchain. ISDFS Proceedings.

[7]. JavaFX Documentation. Oracle. https://openjfx.io

[8]. Kshetri, N. (2017). Can Blockchain Strengthen the Internet of Things? IT Professional, 19(4), 68–72.

[9]. Szabo, N. (1997). The Idea of Smart Contracts.

https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/sz

abo.best.vwh.net/smart.contracts.html

[10]. Rikken, O., &Zwitter, A. (2020). Trust in Blockchain-Based Voting Systems: The Role of Public Perception.

Technology in Society, 63, 101395.

[11]. Ali, R., Clarke, N., & Furnell, S. (2020). An Evaluation of the Usability and Security of E-Voting Systems.

Computers & Security, 88, 101640.

[12]. Ayed, A. B. (2017). A Conceptual Secure Blockchain-Based Electronic Voting System. IJNSA, 9(3), 1–9.

[13]. Atzori, M. (2017). Blockchain Technology and Decentralized Governance. Journal of Governance and

Regulation, 6(1), 45–62.

[14]. Khurana, M., & Baral, R. (2021). A Secure E-Voting System Using Blockchain and Fingerprint

Authentication. Procedia Computer Science, 185, 318–326.

[15]. Kim, H. M., & Laskowski, M. (2018). Ontology-Driven Blockchain Design for Provenance. ISAFM, 25(1),

18–27.

