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Abstract: Understanding and determining the existence of disease in agriculture is important for food 

security and sustainable agriculture practice. Agricultural activities such as visual inspection is 

subjective and requires endless hours of work looking over meticulous details which makes it 

impractical in larger settings. With the development of precision agriculture, automated disease 

detection systems are gaining popularity as they reduce dependency on manual work and monitoring. 

This research aims to develop a scalable and robust framework based on deep and traditional machine 

learning for classifying and detecting diseases in plants. 

As the basis of the method, a U-Net based segmentation model which was designed for biomedical 

imaging is applied with a segmentation model for capturing spatial precision which needs pixel-level 

segmentation of fine-grained disease affected spatial details. The segmentation partitions diseased pixel 

regions to improve subsequent classification. Features of interest, colored histograms, shapes, and 

textures are extracted, and classification is performed by SVM, RF, and k-NN. Assessment is done based 

on the amount of accuracy, precision, recall, F1-score, and IoU measurable intersection over union. 

Using the Plant Village dataset that contains over 54,000 annotated images, experiments run. 
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I. INTRODUCTION 

Agriculture remains a pillar to global food security and the economy, as it supports billions in terms of food and 

livelihood. Nevertheless, the ever-growing occurrence of crop diseases, comprising of various pathogens such as 

bacteria, viruses, and fungi, is a critical threat to agricultural productivity and sustainability. Plant diseases must be 

diagnosed accurately and rapidly to avoid crop loss. Diagnosis relying on visual assessment is often inadequate due to 

subjective human interpretation, which is not scalable. 

Timely and accurate diagnosis of plant diseases is essential to mitigate crop loss, error-prone. Visual assessment suffers 

from several limitations, including human subjectivity, lack of scalability, and the prevent the misuse of agrochemicals, 

and support integrated pest and disease management strategies. Delayed or inaccurate detection can lead to significant 

yield reductions, financial losses for farmers, and environmental degradation due to overuse or misuse of pesticides. 

Traditionally, disease diagnosis relies on manual inspection by agricultural experts, which is both time-consuming and 

requirement for domain expertise, making it impractical for large-scale agricultural monitoring. With the rapid 

advancements in computer vision and artificial intelligence (AI), automated plant disease detection has emerged as a 

transformative tool in the field of precision agriculture. AI- based solutions can provide consistent, objective, and real-

time diagnostics, thereby reducing dependency on expert supervision. 

Among various AI techniques, deep learning—particularly Convolutional Neural   Networks  (CNNs)—has 

demonstrated superior performance in complex image recognition tasks. CNNs automatically extract hierarchical and 

discriminative features from raw image data, making them well-suited for plant disease classification. However, 

conventional classification approaches often struggle to identify the exact regions affected by disease, limiting 

interpretability and leading to potential misclassification in heterogeneous image backgrounds. 
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To address this limitation, we propose a hybrid framework that integrates U-Net—a state-of-the-art deep learning 

architecture for image segmentation—with traditional machine learning classifiers, including Support Vector Machine 

(SVM), Random Forest (RF), and k-Nearest Neighbors (k-NN). U-Net facilitates pixel- level segmentation of disease-

affected regions, preserving spatial details through its encoder-decoder structure with skip connections. This 

preprocessing step enables focused feature extraction from infected areas, enhancing the relevance and quality of input 

data for classification models. 

By isolating the diseased regions before classification, our approach enhances both accuracy and interpretability. The 

proposed layered system not only localizes disease symptoms but also categorizes them effectively, demonstrating high 

potential for real-world deployment in smart agriculture applications, particularly for large-scale or resource-limited 

farming environments. 

  

II. LITERATURE REVIEW 

In the last decade, detection of plant diseases has become a very active area of research, primarily because of advances 

in computer vision and deep learning. More classical methods of image processing that relied on feature engineering 

and thresholding are slowly being replaced by data-driven approaches that can learn complex patterns from images. 

Convolutional Neural Networks (CNNs) have emerged as the most popular due to their ability and accuracy in 

performing visual recognition tasks on diverse datasets. 

A foundational work in segmentation-based deep learning is the U- Net architecture, proposed by Ronneberger et al. 

(2015), originally for biomedical image segmentation. U-Net's encoder- decoder structure, combined with skip 

connections, allows it to capture both low- level spatial details and high-level semantic features, making it highly 

suitable for pixel- wise classification tasks. Its application has since extended to agriculture, where precise 

segmentation of disease-affected regions is crucial for accurate diagnosis. 

In a pioneering study, Mohanty et al. (2016) employed standard CNN architectures such as AlexNet and GoogLeNet to 

classify 38 plant diseases across 14 crop species using the PlantVillage dataset. Although the models achieved 

impressive classification accuracy (above 99%), they operated on entire leaf images without localizing disease regions, 

thereby lacking spatial interpretability—a critical factor in real-world disease assessment and treatment planning. 

Building on this foundation, Fuentes et al. (2017) developed a region- based CNN (R-CNN) model for real-time tomato 

disease detection. While their model could detect multiple disease types simultaneously, it faced challenges with 

overlapping symptoms and background noise, especially under field conditions with complex environments. 

To address these shortcomings, subsequent research introduced segmentation as a preprocessing step, enhancing focus 

on infected regions and reducing background interference. Ferentinos (2018) trained deep CNNs on the full 

PlantVillage dataset and achieved over 99% accuracy, but the model was computationally intensive and lacked the 

capability to visually highlight disease- affected areas—an essential requirement for explainable AI in agriculture. 

Recent studies have proposed hybrid frameworks that integrate deep segmentation models like U-Net with conventional 

machine learning classifiers. For instance, Raza et al. (2020) and Zhang et al. (2019) demonstrated that segmenting 

disease regions before classification significantly improves accuracy, especially in the presence of complex leaf 

textures or multi-label conditions. By combining the spatial localization power of U-Net with the decision-making 

robustness of classifiers like Support Vector Machines (SVM), Random Forests (RF), and Decision Trees, these hybrid 

approaches offer both interpretability and scalability. 

This literature trajectory underlines a shift from pure classification toward segmentation-classification pipelines, which 

not only enhance accuracy but also provide visual interpretability—an increasingly critical criterion for decision 

support systems in precision agriculture. The promising results from these hybrid models serve as the foundation for 

our proposed framework. 

 

III. METHODOLOGY AND SYSTEM ARCHITECTURE 

A. Dataset 

• Decoder (Expanding Path): Transposed convolution  (upsampling)  layers  
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This study utilizes the PlantVillage dataset, a widely recognized benchmark for plant disease classification tasks. The 

dataset comprises over 54,000 high-quality RGB images of healthy and diseased plant leaves. It covers 14 crop species 

including tomato, potato, and apple, and represents 38 distinct disease classes, such as bacterial spot, early blight, late 

blight, leaf mold, and powdery mildew. 

All images are captured under controlled conditions with uniform, plain backgrounds and are resized to 256×256 

pixels, ensuring consistent input dimensions for model training. To support the segmentation task, a subset of 2,000 

images was manually annotated using the LabelMe tool to create binary masks highlighting diseased regions, which 

were then used to train the U-Net model. 

 

A. Preprocessing 

To enhance model generalization and reduce overfitting, several preprocessing steps were applied: 

• Normalization: All pixel intensity values were scaled to the [0, 1] range. 

• Data Augmentation: Techniques such as rotation, horizontal/vertical flipping, zooming, and contrast adjustments were 

employed to synthetically expand the dataset. 

• Noise Reduction: Gaussian blur was applied to reduce high-frequency noise from image sensors, improving 

segmentation quality. 

 

B. U-Net Segmentation Model 

The segmentation module is based on the U-Net architecture, known for its effectiveness in biomedical and agricultural 

image segmentation. The model comprises three key components: 

• Encoder (Contracting Path): A series of convolutional layers followed by ReLU activation and max pooling, which 

progressively captures hierarchical features and reduces spatial dimensions.  

coupled with skip connections from corresponding encoder layers, enabling recovery of spatial details. 

• Skip Connections: Facilitate the fusion of low-level and high-level features, preserving spatial context during 

upsampling. 

 

Architecture Summary: 

• 4 downsampling blocks (convolution + pooling) 

• Bottleneck layer with 1024 filters 

• 4 upsampling blocks (upsampling + concatenation) 

• Output layer with 1×1 convolution followed by a sigmoid activation to produce a binary segmentation mask 

The model was trained for 50 epochs using the Adam optimizer, with a Dice Loss function to address class imbalance 

between background and diseased regions. 

 

C. Feature Extraction and Classification  

After obtaining the segmented masks, connected component analysis was applied to  isolate disease-affected regions 

(patches). From these localized regions, the following features were extracted: 

• Color Features: Mean and standard deviation of pixel intensities in the RGB channels 

• Shape Descriptors: Region area, eccentricity, convexity, and other geometric metrics 

• Texture Features: Local Binary Patterns (LBP), Gray-Level Co-occurrence Matrix (GLCM) contrast, and entropy 

These feature vectors were input into three traditional machine learning classifiers: 

• Support Vector Machine (SVM) with RBF kernel; hyperparameters: C = 1, γ = 0.1 

• Random Forest (RF) with 100 decision trees 

• k-Nearest Neighbors (k-NN) with k = 5, using Euclidean distance 

 

D. Evaluation Metrics 

The performance of the segmentation and classification modules was quantitatively evaluated using the following  

standard metrics: 
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• Accuracy (Acc) = (TP + TN) / Total 

• Precision (Prec) = TP / (TP + FP) 

• Recall (Rec) = TP / (TP + FN) 

• F1 Score = 2 × (Prec × Rec) / (Prec + Rec) 

• Intersection over Union (IoU) = Area of Overlap / Area of Union 

These metrics provide comprehensive insights into the model’s ability to localize and classify plant diseases across 

various classes. 

 
Fig. 3.1 System Architecture 

 
 

Fig. 3.2 Training Model 

 

IV. EXPERIMENTAL RESULTS 

In this study, we proposed a robust and modular framework for automated plant disease detection and classification, 

combining the U-Net deep learning architecture for pixel-level segmentation with machine learning classifiers for 

disease identification. By segmenting diseased regions prior to classification, the system enhances the interpretability 

and relevance of extracted features, resulting in improved classification performance U-Net Segmentation Performance 

  

A. The U-Net model demonstrated strong performance in accurately isolating disease-affected regions in plant leaf 

images. The evaluation was performed on a test set with ground-truth annotations, using standard segmentation metrics: 

• Intersection over Union (IoU): 0.85 

• Dice Coefficient: 0.88 

• Pixel-wise Segmentation Accuracy: 90.2% 

These results indicate that U-Net is effective even in the presence of complex leaf structures or noise, maintaining high 

fidelity in capturing irregular disease patterns and minimizing false positives. 

 

 

 



I J A R S C T    

    

 

               International Journal of Advanced Research in Science, Communication and Technology  

                               International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal 

Volume 5, Issue 5, May 2025 

 Copyright to IJARSCT         DOI: 10.48175/568   401 

    www.ijarsct.co.in  

 
 

ISSN: 2581-9429 Impact Factor: 7.67 

 
B. Classification Performance 

The segmented disease patches were processed through three classifiers— Support Vector Machine (SVM), Random 

Forest (RF), and k-Nearest Neighbors (k- NN). Performance was evaluated using a combination of accuracy, precision, 

recall, and F1-score, as shown in Table I. 

Table I: Classification Metrics Comparison Across Algorithms 

Classifier Accuracy (%) Precision (%) Recall (%) F1 Score (%) 

SVM 92.5 90.3 93.1 91.7 

Random Forest 91.1 89.7 91.9 90.8 

k-NN 88.4 86.2 87.6 86.9 

 

Among the classifiers, SVM yielded the highest classification accuracy of 92.5%, showing superior generalization on 

high- dimensional feature vectors derived from the segmented regions. Its robustness to noise and overfitting makes it 

particularly well-suited for agricultural image classification tasks with limited or imbalanced data. 

The Random Forest classifier also performed competitively, offering a balance between interpretability and predictive 

accuracy. However, it was marginally more susceptible to overfitting, particularly in images with overlapping 

symptoms or ambiguous feature boundaries. 

The k-NN classifier achieved the lowest accuracy among the three due to its sensitivity to noisy features and the 

absence of learned feature weighting mechanisms. Despite its simplicity, k-NN is less scalable for large datasets or real-

time deployment. 

 

IV. RESULT 

The test comes about unequivocally approve the proposed frameworks viability incombining U- Net-based division 

with conventional machine learning classifiers for vigorous plant   infection   location  and classification.. The layered 

approach— beginning with pixel-wise segmentation of diseased regions, followed by feature extraction and 

classification—demonstrates notable advantages over conventional end- to-end image classifiers. 

The U-Net architecture proved highly effective in isolating disease-affected leaf regions, achieving a Dice coefficient of 

0.88 and an Intersection over Union (IoU) score of 0.85. These metrics confirm U- Net’s strength in maintaining spatial 

precision, even in the presence of visually complex or noisy backgrounds. The segmentation step enhances the 

relevance of extracted features by filtering out irrelevant background content, thereby improving downstream classifier 

performance. 

Among the classifiers, the Support Vector Machine (SVM) consistently outperformed other models, achieving a 

classification accuracy of 92.5%. Its ability to generalize in high-dimensional feature spaces, especially when training 

data is limited, makes it a strong candidate for real- world deployment. The Random Forest (RF) classifier also 

delivered competitive results, with an accuracy of 91.1%, benefitting from its ensemble nature and low susceptibility to 

noise. However, its performance showed slight degradation in scenarios involving overlapping or visually similar 

disease patterns. 

The k-Nearest Neighbors (k-NN) classifier, while simple and interpretable, critical for agricultural decision support 

systems. 

 

Future Work 

While the current framework provides a strong foundation, several enhancements can be pursued to further improve 

accuracy, generalizability, and real-world applicability: 

• Advanced Segmentation Architectures: Future implementations can incorporate models such as DeepLabV3+, Mask 

R- CNN, or U-Net++ for improved segmentation performance under natural environmental conditions with varying 

illumination, occlusion, and backgrounds. 
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• Transfer Learning and Pretrained Backbones: Leveraging pretrained segmentation networks from domains like 

biomedical imaging or satellite remote sensing may reduce the need for large annotated datasets and accelerate 

convergence, especially in resource- constrained training scenarios. 

• Lightweight and Real-Time Deployment: For on-field usage, developing lightweight inference pipelines compatible 

with mobile devices, drones, or edge-computing platforms can enable real-time disease monitoring in remote or rural 

agricultural settings. Techniques such as model pruning, quantization, and ONNX optimization will be explored to 

reduce latency and memory footprint. 

• Multimodal Fusion: Future versions of the system may integrate environmental demonstrated relatively lower 

accuracy (88.4%) due to its sensitivity to noise, lack of feature weighting, and increased computational cost during 

inference. These limitations suggest that k-NN may be less suitable for large-scale or real-time applications. 

Overall, the integration of deep segmentation with machine learning classification not only improves accuracy but also 

enhances model interpretability and domain adaptability, both of which are 

factors such as humidity, temperature, and soil data to perform predictive disease analytics, extending its utility from 

diagnosis to proactive disease management. 

By addressing these directions, the proposed framework can evolve into a comprehensive, intelligent, and scalable 

disease monitoring solution for precision agriculture and smart farming ecosystems. 

 

V. CONCLUSION 

In this consider, we proposed a vigorous and measured system for robotized plant malady location and classification, 

combining the U-Net profound learning engineering for pixel- level division with machine learning classifiers for 

infection distinguishing proof. By sectioning unhealthy locales earlier to classification, the framework upgrades the 

interpretability and pertinence of extricated highlights, coming about in progressed classification execution. 

Experimental evaluations on the PlantVillage dataset confirmed the effectiveness of this approach. The U-Net model 

achieved high segmentation accuracy (IoU of 0.85 and Dice coefficient of 0.88), while the Support Vector Machine 

(SVM) classifier outperformed others with a classification accuracy of 92.5%. This demonstrates the advantage of 

integrating deep learning-based spatial localization with classical classifiers that perform well in high-dimensional, 

structured feature spaces. 

The framework is highly scalable, computationally efficient, and interpretable, making it suitable for real- world 

deployment in agricultural decision support systems. It offers significant benefits for large-scale farms, where manual 

disease detection is impractical, and can serve as a foundation for next- generation precision agriculture technologies. 

Future work will focus on expanding the system's capabilities by: 

• Incorporating advanced segmentation architectures for improved robustness in real-world field conditions, 

• Utilizing transfer learning to reduce annotation overhead, 

• Integrating the system with drone-based imaging platforms for large-scale field surveillance, 

• And combining visual data with environmental and temporal metadata to support predictive analytics and early 

disease warnings. 

By advancing toward these goals, the proposed solution can evolve into a comprehensive tool for real-time, intelligent 

crop health monitoring, contributing to sustainable agriculture and food security on a global scale. 
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