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Abstract: Flooding poses a significant threat globally, leading to immense economic losses and human 

displacement. Accurate and timely detection of flood-affected areas is critical for disaster management 

and response planning. This paper introduces FloodSee, an automated system for flood detection using 

satellite imagery. The system leverages data from the Sentinel-1 and Sentinel-2 satellites and employs a 

fine-tuned ResNet-50 deep learning architecture for classification. By combining radar and optical 

imagery, FloodSee overcomes challenges such as cloud cover and provides robust detection capabilities. 

Experimental results demonstrate the model's high accuracy, highlighting its potential for operational 

deployment in flood monitoring and mitigation systems. 
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I. INTRODUCTION 

Floods are among the most frequent and devastating natural disasters, disrupting millions of lives and causing 

widespread damage to infrastructure and agriculture. With climate change increasing the frequency and intensity of 

extreme weather events, the need for effective flood monitoring systems has become more urgent. Remote sensing, 

enabled by satellite imagery, offers a scalable and efficient approach to monitoring floods across large areas.Manual 

interpretation of satellite data is labor- intensive and often impractical during emergencies.Traditional rule-based 

algorithms, while faster, fail to handle the variability in flood scenarios, such as cloud-covered regions or diverse 

terrains. This research introduces FloodSee, an automated flood detection system that employs Sentinel-1 and Sentinel-

2 data in conjunction with ResNet-50, a deep learning model fine-tuned for flood classification. FloodSee provides a 

high-accuracy, scalable solution capable of rapid response in flood-prone areas. 

Satellite-based remote sensing has emerged as a vital tool for monitoring floods, offering the capability to cover large 

geographic areas with high temporal and spatial resolution. Among the available platforms, Sentinel-1 provides radar- 

based Synthetic Aperture Radar (SAR) imagery, enabling flood detection under challenging conditions such as cloud 

cover or nighttime. Sentinel-2 complements this with high- resolution multispectral optical imagery, which is valuable 

for detailed analysis of flood-affected areas Satellite remote sensing has emerged as a cornerstone technology for flood 

detection and management due to its ability to cover vast geographic areas with high temporal and spatial resolution. 

Sentinel-1, with its radar-based Synthetic Aperture Radar (SAR) capabilities, is particularly advantageous for all-

weather and day-night monitoring, making it ideal for flood detection under cloudy conditions. Meanwhile, Sentinel-2, 

equipped with high-resolution multispectral optical sensors, offers detailed imagery that can complement SAR data by 

providing additional spectral information. 

 

II. LITERATURE REVIEW 

1. Project Title: Flood Risk Mapping and Prediction Using AI. : Flood risk mapping has emerged as a critical 

component of disaster management. Studies have explored the integration of geospatial data and machine learning 

algorithms to predict flood-prone areas. Techniques such as Random Forest and Gradient Boosting have been employed 

to analyze topography, rainfall patterns, and historical flood data. Recent advancements in AI highlight the use of 

convolutional neural networks (CNNs) to extract features from satellite images for accurate flood mapping. However, 
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challenges remain in model scalability, data quality, and real-time prediction accuracy. This research aims to refine risk 

prediction frameworks and enhance decision-making in flood-prone regions. 

Project Title:Post-Disaster Infrastructure Damage Detection Using Drone Imagery 

Infrastructure damage detection post-disaster has been a focus of various studies, leveraging aerial imagery and 

computer vision techniques. Research has demonstrated the potential of AI models such as ResNet and U-Net for 

damage classification and segmentation. The application of semantic segmentation enables precise damage localization 

in buildings, roads, and bridges. However, limitations like occlusions in images, lack of annotated datasets, and 

computational costs hinder the practical implementation. This project aims to bridge these gaps by developing a robust 

framework for infrastructure assessment, providing essential data for recovery planning. 

Project title: Automated Flood Relief Resource Allocation Using AI 

The efficient distribution of relief resources during floods is a critical yet complex logistical task. Traditional methods 

rely on static allocation plans, which are often ineffective in dynamic disaster situations. AI-based solutions have been 

explored to address this, combining optimization techniques and real-time data for adaptive resource allocation. 

Research demonstrates the use of optimization algorithms, such as genetic algorithms, to solve resource allocation 

problems by simulating multiple scenarios. More recently, Reinforcement Learning (RL) models have been applied, 

allowing systems to "learn" optimal strategies based on past disasters. 

Key limitations include the lack of real-time integration of flood data, as well as difficulties in accounting for 

unpredictable variables like changing weather conditions or sudden population movements. This project proposes a 

hybrid approach that combines RL with IoT data from flood sensors, drones, and community feedback. The system will 

provide dynamic and efficient resource allocation to minimize response times and maximize aid effectiveness. 

Project title: Predictive Flood Insurance Model Using AI 

Project title: Early Flood Detection Using IoT Sensors and Deep Learning. Early flood detection systems have 

traditionally relied on threshold-based models that monitor water levels and weather conditions. While effective in 

some scenarios, these methods are prone to false alarms and often lack predictive capabilities. IoT (Internet of Things) 

networks are now being used to gather real-time data from sensors placed in flood-prone areas, such as rivers, dams, 

and urban drainage systems.Studies explore the use of time-series analysis models, including Long Short-Term Memory 

(LSTM) and Gated Recurrent Units (GRU), to predict floods based on sensor data. These models are well-suited for 

capturing temporal dependencies in data, such as rising water levels or continuous rainfall. Additionally, hybrid 

models combining LSTM with Convolutional Neural Networks (CNNs) have shown promise in improving prediction 

accuracy. 

Challenges  include  sensor  malfunctions,  data 

transmission issues, and overfitting in deep learning models due to small datasets. This project will integrate IoT 

networks with robust AI models to develop a reliable early warning system, ensuring timely alerts and minimizing 

flood-related damages. 

  

Project title: Flood Impact Analysis and Recovery Monitoring Using Sentinel Data. 

Analyzing the impact of floods and monitoring recovery efforts are essential for effective disaster management. 

Sentinel-1 and Sentinel-2 satellites, with their high- resolution radar and optical imaging capabilities, have been widely 

used for flood impact assessment. Research in this area focuses on change detection algorithms that compare pre- and 

post-disaster imagery to identify flooded areas and assess damage. Object detection frameworks such as Mask R-CNN 

and transfer learning methods have been utilized to analyze Sentinel data, enabling accurate classification of affected 

infrastructure and vegetation. However, issues like low- resolution imagery, high computational demands, and the need 

for domain-specific training data limit the effectiveness of these methods. This project will address these limitations by 

implementing advanced ResNet-based architectures optimized for Sentinel data. The focus will be on improving the 

accuracy of flood extent mapping and supporting recovery monitoring by providing insights into vegetation regrowth, 

infrastructure repair, and population resettlement efforts.. 
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Project title: Real-Time Flood Evacuation Route Planning Using AI. 

Flood insurance systems are often reactive, with premiums based on historical data and outdated risk assessments. 

Predictive modeling can revolutionize flood insurance by providing accurate, data-driven risk estimates. Recent studies 

have used regression models and Bayesian networks to predict the likelihood and severity of flooding in specific 

regions.Deep learning models, such as Gradient Boosting Machines (GBM) and XGBoost, have been employed to 

analyze diverse datasets, including rainfall patterns, topography, and historical flood records. While these models 

improve prediction accuracy, they often lack transparency, leading to difficulties in policyholder trust. 

This project aims to develop a predictive flood insurance model using Explainable AI (XAI) techniques. The model will 

analyze environmental and socioeconomic factors to provide personalized insurance plans, ensuring affordability and 

fairness while improving insurers' risk management strategies. 

 
Fig 1.1 System Architecture. 

 Floods often lead to disrupted transportation networks, making evacuation route planning a critical challenge. 

Traditional methods use static maps and fixed plans, which fail to adapt to rapidly changing flood scenarios. AI- based 

solutions can dynamically generate and update evacuation routes using real-time data from IoT sensors, weather 

reports, and satellite imagery.Recent research highlights the application of graph-based algorithms like Dijkstra’s and 

A* for shortest path calculations. However, these approaches often fail to account for dynamic variables like rising 
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floodwaters or blocked roads. Reinforcement Learning (RL) models, trained on simulated flood scenarios, have been 

proposed for adaptive route planning, but they require extensive computational resources.This project focuses on 

developing a hybrid model combining graph-based algorithms and machine learning for real-time evacuation routing. 

The integration of drone imagery and flood sensor data will ensure that routes are continuously updated, providing safe 

and efficient evacuation paths for affected communities 

 

III. SYSTEM ANALSIS 

Objective 

The primary objective of this research is to develop an automated flood detection system, FloodSee, that leverages 

satellite imagery from Sentinel-1 and Sentinel-2. By fine-tuning the ResNet-50 deep learning architecture, the system 

aims to accurately classify flooded and non- flooded regions under diverse environmental conditions. The integration of 

radar and optical data ensures robustness against challenges such as cloud cover and varying terrain, enabling timely 

and reliable flood monitoring for disaster response and management. 

 

RESNET 50 

short for Residual Neural Network with 50 layers, is a deep learning model widely used for tasks like image 

classification, object detection, and feature extraction. It excels due to its residual learning approach, which addresses 

the vanishing gradient problem by introducing skip connections that bypass certain layers, allowing the network to 

learn effectively even with increased depth. RESNET 50 processes input images, such as orthophotos, by extracting 

features at multiple levels—starting with basic edges and textures in the initial layers and advancing to complex 

patterns in the deeper layers. This model is highly relevant for flood detection projects, as it can analyze satellite 

imagery, such as Sentinel-1 and Sentinel- 

2 data, to accurately identify flood-affected regions, distinguish water bodies, and provide detailed insights for disaster 

response and management. Its robust architecture makes it well-suited for handling the complexity of real-world 

scenarios, offering high accuracy and efficiency in extracting meaningful patterns from large datasets. 

  

 TensorFlow/Keras 

TensorFlow, along with its high-level API Keras, is a powerful open-source library for building and deploying machine 

learning and deep learning models. It offers a versatile framework for designing neural networks, from simple 

sequential architectures to complex multi-branch networks. Keras simplifies the model-building process by providing 

an intuitive interface with prebuilt layers, loss functions, optimizers, and metrics. TensorFlow is particularly effective 

for large-scale computations, leveraging GPU acceleration for faster training and deployment of deep learning models. 

Its support for production-level tools, such as TensorFlow Lite and TensorFlow Serving, makes it a go-to library for 

both research and real-world applications like flood detection and satellite image analysis. 

  

Matplotlib 

Matplotlib is a robust library for creating static, interactive, and animated visualizations in Python. It provides tools for 

plotting data in various formats, including line graphs, scatter plots, heatmaps, and histograms. In the context of flood 

detection, Matplotlib is invaluable for visualizing trends, such as water level changes, flood extent, and prediction 

outputs from models. It enables clear representation of geospatial data and model performance metrics, making it easier 

to communicate results to stakeholders and refine analytical methods. 

 

PyTorch 

PyTorch is an open-source deep learning framework known for its flexibility, ease of use, and dynamic computational 

graph, making it a favorite among researchers and developers. It allows for the seamless development of neural 

networks with its intuitive tensor operations and a rich library of prebuilt layers, loss functions, and optimization 

algorithms. PyTorch supports both CPU and GPU acceleration, enabling efficient training of models on large datasets. 

Its dynamic computation graph allows developers to modify and debug models in real-time, offering unmatched 
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versatility during experimentation. In flood detection projects, PyTorch can be used to build and train custom models, 

such as RESNET-50, to process satellite imagery and identify flood-affected areas. The framework also integrates well 

with data handling libraries like Pandas and visualization tools like Matplotlib, streamlining the end- to-end 

development pipeline. 

 

Sentinel-1 and Sentinel-2 Datasets 

Sentinel-1 and Sentinel-2, part of the European Space Agency's Copernicus program, provide complementary datasets 

for Earth observation. Sentinel-1 uses radar imaging to capture all-weather, day-and-night data, making it ideal for 

flood detection during adverse conditions by accurately identifying water bodies. Sentinel-2 complements this with 

multispectral optical imagery across 

13 bands, offering detailed insights into water spread, sedimentation, and vegetation damage. Together, these datasets 

provide a comprehensive view of flood events, combining radar's surface analysis with optical spectral insights, 

ensuring accurate and timely disaster management solutions 

 

Proposed Method 

For the proposed flood detection method, the process begins with the collection and preprocessing of Sentinel-1 and 

Sentinel-2 datasets. The Sentinel-1 data, which uses Synthetic Aperture Radar (SAR), is utilized to capture radar-based 

imagery that can penetrate clouds and darkness, making it effective for detecting water bodies under any weather 

condition. The Sentinel-2 data, which provides multispectral optical imagery, is used to analyze vegetation, water 

bodies, and soil, offering valuable insights into flood extent and damage. The preprocessing stage involves extracting 

key features from both datasets: Sentinel-1’s dual-polarization backscatter coefficients (VV and VH) are used to 

identify water, while Sentinel-2's spectral indices like NDVI and NDWI help distinguish between water, vegetation, 

and soil.After preprocessing, the next step is to align both Sentinel-1 and Sentinel-2 images spatially and temporally to 

ensure that the data from both sources match accurately. Once aligned, the datasets are combined to leverage both radar 

and optical insights for a more comprehensive understanding of the flood-affected areas. Following this, a deep learning 

model based on RESNET-50 is employed for feature extraction and classification. RESNET-50 is trained on the 

combined dataset to identify flood zones, leveraging its ability to extract hierarchical features from the images. The 

model is fine-tuned to distinguish between flooded and non-flooded areas based on the combined radar and optical data 

inputs.Finally, the output of the RESNET-50 model is analyzed and visualized using tools like Matplotlib, providing 

graphical representations of flood-affected regions. This visualization helps in disaster response by identifying critical 

areas that require immediate attention. The proposed method combines the strengths of both Sentinel datasets with deep 

learning to enable efficient, accurate, and timely flood detection. 

 

Sentinal 1 - 2 Dataset 

In your flood detection project, Sentinel-1 and Sentinel-2 datasets are essential for accurately identifying flood-affected 

areas. Sentinel-1, with its Synthetic Aperture Radar (SAR) capabilities, is particularly valuable as it captures radar-

based images that can penetrate cloud cover and work in any weather condition, allowing continuous monitoring even 

during heavy rainfall or storms. This makes Sentinel-1 ideal for detecting water bodies in flood-prone regions, 

especially in situations where optical data may be obscured by clouds. By analyzing the backscatter coefficients from 

Sentinel-1’s radar data, your project can identify water surfaces and flood zones accurately, even in challenging 

conditions.On the other hand, 

Sentinel-2 provides multispectral optical imagery, which adds another layer of insight. Its 13 spectral bands, including 

visible and infrared, allow you to detect changes in vegetation and water bodies more precisely. By calculating indices 

like NDVI (Normalized Difference Vegetation Index) and NDWI (Normalized Difference Water Index), you can 

distinguish between flooded areas, vegetation, and other land surfaces. This helps to validate the flood extent detected 

by Sentinel-1 and adds more detail to the analysis. 

Together, the combination of Sentinel-1's radar-based imaging and Sentinel-2's multispectral optical data enhances your 

project's ability to detect floods with high accuracy, even under varying environmental conditions. The datasets work 
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together to provide both temporal and spatial insights, ensuring that flood-affected regions are detected and mapped 

comprehensively, aiding in real-time disaster response and management. 

 

Preprocessing Steps for Flood Detection Using Sentinel-1 and Sentinel-2 Data 

Preprocessing is a crucial step in ensuring that the raw Sentinel-1 and Sentinel-2 data is clean, aligned, and ready for 

analysis. For flood detection, it is essential to extract relevant features and align both datasets so they can be used in 

combination to improve model accuracy. Below are the key preprocessing steps used in this project: 

 

Data Acquisition: 

The first step involves acquiring the Sentinel-1 and Sentinel-2 data from the Copernicus Open Access Hub. The data 

typically comes in the form of GeoTIFF files, with different resolutions and spatial coverage. Both Sentinel-1 and 

Sentinel-2 images must be selected based on the geographical area of interest and the time period of the flood event 

being analyzed. 

 

Radiometric Correction: 

Raw satellite images often contain noise and discrepancies due to atmospheric conditions, sensor inconsistencies, and 

other factors. Radiometric correction is applied to adjust the image data, ensuring that the pixel values reflect the true 

reflectance of the Earth's surface. This correction helps minimize any errors caused by atmospheric scattering, ensuring 

that the data accurately represents the observed features, particularly in the context of water bodies and flood zones. 

 

Geometric Correction and Co-Registration: 

Sentinel-1 and Sentinel-2 datasets are captured using different sensors and platforms, meaning that the images may not 

be perfectly aligned. Geometric correction and co- registration are necessary to align the two datasets spatially. This 

step ensures that the pixel coordinates in both images correspond to the same locations on the Earth's surface. Co-

registration is especially important when combining Sentinel-1’s radar-based data with Sentinel-2’s optical data to 

analyze flood events across the same geographic region. 

 

Temporal Alignment: 

Since Sentinel-1 and Sentinel-2 provide data at different times, it is important to align the data temporally. This 

involves selecting images from both satellites that correspond to the same time period to ensure that the flood event is 

captured consistently across both datasets. Temporal alignment is particularly important for detecting flood changes 

over time and comparing pre- and post- flood conditions. 

 

  

Cloud Masking and Cloud Shadow Removal: 

Sentinel-2 images, being optical, are often affected by cloud cover, especially during flood events. Cloud masking is 

applied to remove the influence of clouds and cloud shadows in the imagery. This is done using automatic cloud 

detection algorithms based on the spectral characteristics of clouds. For instance, Sentinel-2's shortwave infrared bands 

(SWIR) can be used to identify and mask out cloud and cloud shadow pixels, ensuring that only the relevant surface 

data remains for flood detection. 

 

Feature Extraction: 

After the geometric and radiometric corrections, relevant features are extracted from both datasets. For Sentinel-1, the 

key features involve backscatter values from radar data, which are used to distinguish between water and non-water 

surfaces. The dual-polarization bands (VV and 

VH) are particularly important, as they provide insights into surface roughness and water presence. In Sentinel-2, 

spectral indices such as the Normalized Difference Water Index (NDWI) and Normalized Difference Vegetation Index 

(NDVI) are computed. NDWI is particularly useful for identifying water bodies, as it emphasizes the difference 
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between water and land surfaces, while NDVI helps detect vegetation, which can be useful in differentiating between 

flooded vegetation and non-flooded areas. 

 

Data Normalization and Resampling: 

To ensure that both Sentinel-1 and Sentinel-2 data can be input into the deep learning model effectively, the data is 

normalized. This step involves scaling pixel values so that they fall within a consistent range, typically between 0 and 

1. Additionally, if the spatial resolution of the Sentinel-1 and Sentinel-2 datasets differs, resampling is applied to bring 

both datasets to the same resolution. This is important because inconsistent resolutions could lead to inaccurate feature 

extraction and model performance. The resampled datasets are then aligned to the same grid to ensure accurate spatial 

analysis. 

 

Integration of Sentinel-1 and Sentinel-2 Data for Flood Detection 

Integrating Sentinel-1 and Sentinel-2 data combines the strengths of radar and optical imagery, providing a more 

comprehensive solution for flood detection. Sentinel-1's radar data is unaffected by weather conditions like cloud cover, 

making it ideal for detecting water bodies in all conditions, while Sentinel-2's optical imagery offers detailed spectral 

information, especially for identifying changes in vegetation and water bodies.To integrate the data, the first step is to 

ensure both datasets are spatially and temporally aligned. This involves resampling the data to the same resolution and 

matching the time periods of the images. Next, relevant features are extracted from both datasets: Sentinel-1 provides 

radar backscatter values (VV and VH), while Sentinel-2 contributes spectral indices like NDWI and NDVI, which help 

highlight water and vegetation. These features are then combined to create a unified dataset that captures both radar and 

optical information.The combined data is normalized to ensure all features are on the same scale, and redundant 

features are removed using feature selection techniques. Finally, the integrated dataset is used to train the flood 

detection model, such as RESNET-50, to identify flooded areas accurately.By integrating both datasets, the model 

benefits from a richer, more detailed understanding of the landscape, improving the accuracy and robustness of flood 

detection, even in challenging conditions. 

 

IV. RESULTS 

 

   

Fig 1.2 Results. 
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V. CONCLUSION 

FloodSee exemplifies the transformative potential of integrating advanced machine learning techniques with satellite 

imagery to address the critical need for automated flood detection. By combining the strengths of Sentinel-1 Synthetic 

Aperture Radar (SAR) and Sentinel-2 optical data, the system effectively navigates challenges such as cloud cover, 

complex terrain, and dynamic environmental conditions, ensuring robust and reliable classification of flooded 

areas.Sentinel-1's SAR capabilities are especially advantageous for penetrating cloud cover and capturing data under 

all- weather conditions, while Sentinel-2's high-resolution optical imagery provides valuable complementary insights.At 

the heart of FloodSee lies a fine-tuned ResNet-50 model, a state-of-the-art convolutional neural network (CNN) 

architecture. The model has demonstrated exceptional performance, achieving remarkable accuracy and efficiency in 

distinguishing flood-affected regions from non-flooded areas. Its deep layers and residual connections allow for 

capturing intricate spatial patterns and features, making it well-suited for analyzing the diverse and often complex 

characteristics of satellite imagery. This project underscores the pivotal role of modern deep learning architectures in 

disaster management, showcasing their ability to process large volumes of multi-modal data efficiently. By integrating 

radar and optical data, FloodSee provides a comprehensive and scalable framework for real-time flood monitoring. 

Such innovation is crucial for improving disaster preparedness, enabling authorities to respond swiftly and effectively 

to flood events, thereby minimizing loss of life and property. 

  

Challenges and Opportunities for Future Development 

While FloodSee marks a significant step forward, challenges remain. Data availability, particularly for regions with 

limited satellite coverage or historical records, can hinder the system's global applicability. Additionally, the 

computational resources required for processing high-resolution satellite data and training deep learning models are 

non-trivial. Addressing these challenges will require strategic investment in data infrastructure, cloud computing, and 

partnerships with space agencies and technology providers. 

Looking ahead, the FloodSee framework offers exciting avenues for further development: 

1. Temporal Analysis: Incorporating time-series data can improve the system's ability to track flood progression, 

assess duration, and understand the temporal dynamics of affected regions. 

2. Integration of Additional Data Modalities: Expanding the framework to include elevation models, meteorological 

data, and socioeconomic layers can enhance predictive accuracy and support more targeted disaster response strategies. 

3. Real-Time Optimization: Streamlining the system for real-time deployment on cloud platforms or edge devices will 

enable near-instantaneous flood detection and updates, a critical capability for emergency management. 

Impact on Disaster Preparedness and Response 

FloodSee stands as a testament to the power of interdisciplinary innovation, blending advances in satellite remote 

sensing, machine learning, and geospatial analysis. By providing a reliable and scalable solution for automated flood 

detection, the system has the potential to revolutionize disaster management practices globally. Continued innovation 

and collaboration will be essential to fully realize its capabilities and extend its impact, making FloodSee a cornerstone 

of resilient and proactive disaster preparedness strategies. 
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