
I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26467 553

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

MedHist: A Medical Unified Database

Management System
Ayush Chandgude1, Vinit Mule2, Amol Chincholkar3

Department of School of Computing1,2,3

MIT ADT University Pune, India

ayushchandgude08@gmail.com; vinitmule2772@gmail.com;

amolchincholkar@mituniversity.edu.in

Abstract: In today's healthcare system, the requirement for effective, secure, and convenient digital

record-keeping of medical information has become more significant. Manual processes tend to be time-

consuming, error-prone, and inconvenient for patients as well as healthcare providers. To counteract

these issues, this project presents MedHist – a Medical Unified Database Management System, which is

a light web application that has been developed using Python (Flask), MySQL, and typical web

technologies including HTML and CSS. MedHist was created as an integrated system that is intended to

manage patient information, medical histories, treatments, medications, and appointment scheduling.

Keywords: Medical Records, Record System, Flask Framework, MySQL, Webpage, Patient Profile

I. INTRODUCTION

Over the past few years, the healthcare industry has witnessed a massive shift towards automation and digitization,

prompted by growing needs for quality patient care, accuracy in record handling, and streamlining of administrative

functions. Hospitals, clinics, and even small private medical practices are increasingly embracing electronic health

record (EHR) systems to improve patient data handling. However, most available solutions in the market are costly,

complex, or require a lot of technical expertise for proper installation and operation. MedHist (Medical Unified

Database Management System) aims to overcome these limitations by offering a deployable, user-friendly, and

lightweight solution that is best suited for small-scale healthcare providers or educational institutions. MedHist makes

simple operations like patient registration, login, appointment scheduling, and management of medical records simple

through an easy-to-use web interface. Contrary to conventional systems involving the use of several loosely integrated

tools or paper-based processes, MedHist consolidates all patient-related information in one integrated platform, thus

making it easy to access for updates and consultations by healthcare professionals like physicians, nurses, or

administrators, as and when needed. This leads to fewer errors, time savings, and improved overall quality of care.

MedHist is coded with Flask, a Python micro web framework deserving of lightness and versatility, and MySQL, a

lightweight database engine for applications in embedded or local environments. MedHist, for its part, employs the

Waitress WSGI server for production-level and hassle-free deployment in Windows environments

The purpose of MedHist is to create a simple-to-use medical database system where users are able to:

 Enrol patients with required medical data

 Log in with their Patient ID and Name

 Observe and review patient record

 Book appointments

 Secure access to all information by a web browser

MedHist is useful to display a patient’s profile where the entire details are to be displayed. The medicines which are to

be required are also displayed as the entire portfolio is generated. The extent of the MedHist – Medical Unified

Database Management System is to design a light, scalable, and user-friendly application for efficiently handling

patient data in small to mid-level healthcare facilities like clinics, medical camps, or educational institutions.

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26467 554

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

This project aims to:

 Provide a core repository for the storage of patient data such as personal information, medical conditions,

treatments, and drug history.

 Enable secure registration and login with a one-of-a-kind Patient ID system.

 Allow users to schedule and manage appointments via the same web interface.

 Offer transparent database connectivity and real-time updates with a slim backend.

 Preserve simple deployment and platform independence, particularly on Windows platforms with a WSGI

production server such as Waitress.

 Employ modern, responsive web technologies to create a clean, accessible user interface.

 Make the system modular and extensible to enable future integration of future advanced functionalities such as

AI-based diagnosis, doctor/admin panels, or remote health monitoring.

II. LITERATURE SURVEY

EHR systems such as Epic and Cerner control hospital infrastructure but have steep barriers to entry for small

providers. Open-source solutions such as Open MRS are promising but need technical skill. Flask-based applications

provide rapid development and integration, which is best suited for focused solutions such as MedHist. Research also

highlights the need for patient-centred systems and secure data. MedHist combines the best practices from other

systems and puts accessibility and ease of use first. The development and implementation of Electronic Health Record

(EHR) systems have revolutionized healthcare today, streamlining patient care coordination, decreasing medical errors,

and enhancing the overall outcomes of healthcare. However, there are differences in the implementation methods,

scalability, accessibility, and security between systems renders it cumbersome—especially to solo practitioners and

small clinics.

Commercial EHR Systems

Well-established clinical EHR systems like Epic, Cerner, and Allscripts dominate the large hospital environments.

These systems have strong features, such as advanced analytics, billing integration, and compliance features. However,

their implementation is expensive and usually demands considerable IT infrastructure and training. HealthIT.gov

(2022) states that their complexity and high price render them unfit for low-resource settings or small-scale practices. A

recurring issue in EHR adoption is poor user experience, leading to clinician burnout. Research shows that lightweight

systems designed with simplicity, responsiveness, and minimal clicks can significantly improve adoption and

satisfaction rates. This supports the minimalist interface design strategy used in MedHist, which prioritizes clarity and

accessibility over excessive features. Although EHR technology is mature, few platforms are simultaneously free,

lightweight, user-friendly, and customizable for low-scale deployment. Most clinics only need a limited subset of the

features offered by enterprise EHRs but are either constrained to over-invest or resort to using paper-based solutions.

This is where MedHist seeks to fit in—by providing a working system with login, tracking of patient records, and

scheduling of appointments without requiring specialized hardware or staff.

 International Journal of Advanced

 International Open-Access, Double

 Copyright to IJARSCT
 www.ijarsct.co.in

ISSN: 2581-9429

III. SYSTEM ARCHITECTURE AND DESIGN

Figure 1. System Architecture Diagram

1. Frontend (Web Browser)

 Built with HTML, CSS templates

 Includes pages like login.html, signup.html, home.html, and

2. Backend (Flask Framework)

 Uses app.py to handle routing, logic, and interaction with the database.

 Communicates with HTML templates via Jinja2.

 Manages patient registration, login, form submissions, and data fetching.

3. Database (MySQL)

 A file-based lightweight database (database. dB).

Stores:

 Patient Information

 Appointment Bookings

 Medical History

I J A R S C T

International Journal of Advanced Research in Science, Communication and Technology

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, May 2025

 DOI: 10.48175/IJARSCT-26467

III. SYSTEM ARCHITECTURE AND DESIGN

Figure 1. System Architecture Diagram

Includes pages like login.html, signup.html, home.html, and appointments.html.

Uses app.py to handle routing, logic, and interaction with the database.

Communicates with HTML templates via Jinja2.

Manages patient registration, login, form submissions, and data fetching.

based lightweight database (database. dB).

Technology

Multidisciplinary Online Journal

 555

Impact Factor: 7.67

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26467 556

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

BLOCK DIAGRAM OF MEDHIST

Figure 2. Block Diagram of MedHist

IV. PROPOSED METHODOLOGY

MedHist was developed using Python's Flask framework with MySQL for database management. The development

process followed agile principles, incorporating user feedback through iterative testing. Core features include:

 User registration/login with secure password hashing

 Auto-generated patient IDs

 Medical history input and view functionality

 Appointment booking

 Clean, responsive UI with HTML/CSS and Bootstrap

 Deployment using Waitress for Windows-based production

The Core Features of MedHist are as follows

1. User Registration (Signup)

 Input: Name, Age, Gender, Address, Medical Condition, Treatment, Medicines.

 Generates a unique Patient ID.

2. User Login

 Requires only Name and Patient ID for secure access.

3. Medical History

 Patients’ data is stored and can be retrieved or extended with new visits and treatments.

4. Appointment Management

 Patients can book appointments through a simple form.

 Stored in the database with date, time, and patient reference.

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26467 557

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

V. RESULTS AND DISCUSSION

Figure 3. Patient Details on a Webpage

Figure 4. Patient Profile thru Patient ID

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26467 558

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

Figure 5. Data is Stored in MySQL Database

Figure 6. Appointment Scheduling

 International Journal of Advanced

 International Open-Access, Double

 Copyright to IJARSCT
 www.ijarsct.co.in

ISSN: 2581-9429

Figure 7. Appointments Scheduled for Patients

The MedHist system was tested locally in a simulated clinic environment. It demonstrated:

 High loading speed and interactive user activity

 Proper retrieval and updating of patient records

 Efficient appointment scheduling and confirmation

 Secure login/logout sessions

MedHist is designed with a combination of simplicity and required functionality. It is optimized for single practitioners

or small clinics with a requirement for low

and MedHist does not have sophisticated analytics or billing functionality and also the application of AI which is work

in progress. These can be added in future versions.

VI. TESTBED SETUP AND CONFIGURATION

To verify the functionality, performance, and usability of the MedHist system, a local testbed environment was

established simulating a small clinic environment. This s

during development and testing.

6.1 Hardware Installation

The MedHist testbed was implemented on a typical personal computer of a typical small clinic workstation:

 Processor: Intel Core i5 (2.40 GHz)

 RAM: 8 GB

 Storage: 256 GB SSD

 Operating System: Windows 11 Pro 64

 Network: Localhost (127.0.0.1) via a private LAN

This setup mimics a low-resource environment to enable MedHist to function optimally without advanced

infrastructure.

I J A R S C T

International Journal of Advanced Research in Science, Communication and Technology

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, May 2025

 DOI: 10.48175/IJARSCT-26467

Figure 7. Appointments Scheduled for Patients

The MedHist system was tested locally in a simulated clinic environment. It demonstrated:

High loading speed and interactive user activity

patient records

Efficient appointment scheduling and confirmation

MedHist is designed with a combination of simplicity and required functionality. It is optimized for single practitioners

low-cost, private setup. Scalability is, however, restrained by MySQL database,

and MedHist does not have sophisticated analytics or billing functionality and also the application of AI which is work

in progress. These can be added in future versions.

VI. TESTBED SETUP AND CONFIGURATION

To verify the functionality, performance, and usability of the MedHist system, a local testbed environment was

established simulating a small clinic environment. This section describes the hardware, software, and setup utilized

The MedHist testbed was implemented on a typical personal computer of a typical small clinic workstation:

Hz)

Operating System: Windows 11 Pro 64-bit

Network: Localhost (127.0.0.1) via a private LAN

resource environment to enable MedHist to function optimally without advanced

Technology

Multidisciplinary Online Journal

 559

Impact Factor: 7.67

MedHist is designed with a combination of simplicity and required functionality. It is optimized for single practitioners

cost, private setup. Scalability is, however, restrained by MySQL database,

and MedHist does not have sophisticated analytics or billing functionality and also the application of AI which is work

To verify the functionality, performance, and usability of the MedHist system, a local testbed environment was

ection describes the hardware, software, and setup utilized

The MedHist testbed was implemented on a typical personal computer of a typical small clinic workstation:

resource environment to enable MedHist to function optimally without advanced

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26467 560

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

6.2 Software Stack

The software technology stack used across the implementation and deployment of MedHist was:

 Programming Language: Python 3.11

 Web Framework: Flask 2.3

 Database: MySQL

 Deployment Server: Waitress 2.1 (for running Flask app on Windows)

 Front-end: HTML5, CSS3, Bootstrap 5

 Development Tools: Visual Studio Code, Git for version control

 Test Browser: Google Chrome v124, Mozilla Firefox v115

6.3 User Simulation and Roles

To simulate the real-life clinic setting, a variety of user categories used the system:

 Admin (test environment): Used to review databases manually.

 Medical Staff: Utilized the interface to view/enter patient history and appointments.

 Patient Simulation: Utilized limited access to verify UI response time and clarity.

6.4 Security and Session Management

 All user passwords were hashed through salted hashing through werkzeug.security.

 Flask session management was implemented using secure cookies.

 Basic form validation and input sanitization were employed to avoid SQL injection and XSS.

6.5 Limitations

The testbed now employs a single-machine setup without concurrency simulation. Future tests will include multi-user

access simulation and deployment on cloud-based test environments to test performance under load.

VII. CONCLUSIONS AND FUTURE WORK

MedHist offers a promising solution for decentralized, light-weight patient information management. It has the

necessary EHR functionality combined with simplicity of deployment and usage. Future includes the integration of

advanced security mechanisms, cloud deployment, and data visualization.

FUTURE WORK

While MedHist readily offers an entire system for managing patient medical history, there are several areas are

amenable to improvement:

Cloud Deployment and Access Control:

Having MedHist in cloud computer systems such as AWS, Azure, or Google Cloud would provide remote access, data

backup and system scalability are key characteristics. Additionally, role-based access control (e.g., administrator,

physician, and receptionist) would introduce multi-user capabilities and improve the security controls on the data.

Enhanced Security Frameworks:

Future versions will have to accommodate features such as 2FA, HTTPS encryption, and audit logs so that it will be

HIPAA or GDPR compliant for medical data privacy laws.

Integration with Medical Devices and APIs:

Integrating device APIs such as for blood pressure monitoring devices or fitness trackers would enable real-time

updating of patient histories. Also, integration with national healthcare systems on HL7 or FHIR standards would

enable exchange of more complete data.

Patient Portal and Mobile Interface:

Adding a patient portal or mobile app would enhance user engagement, allowing patients to see their medical records,

schedule appointments, and get reminders or drug reminders.

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26467 561

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

Data Visualization and Reporting Tools:

Adding charts, graphs, and summary dashboards via libraries such as Chart.js or D3.js can offer insights to physicians

and administrators to support enhanced clinical and operational decision-making.

AI-Informed Insights:

Future versions will use machine learning algorithms to identify patterns in patient data, identify anomalies, or suggest

diagnoses based on past patterns, thus significantly improving clinical support.

REFERENCES

[1]. Caine, K., & Hanania, R. (2013) Patients desire fine-grained control of health data privacy in electronic health

records. Journal of the American Medical Informatics Association, 20(1), 7-15.

[2]. Kuo, A. M. (2011). Opportunities and challenges of cloud computing to improve health care services. Journal

of Medical Internet Research, 13(3), e67.

[3]. Mamlin, B. W., et al. (2006). Open MRS: an open-source platform for developing medical record systems.

AMIA Annual Symposium Proceedings.

[4]. HealthIT.gov. (2022). Benefits of EHRs. https://www.healthit.gov/topic/health-it-basics/benefits-ehrs

[5]. Zhao, L., et al. (2021). Building lightweight healthcare applications using Flask: A case study. International

Journal of Medical Informatics, 149, 104417.

[6]. R Tamblyn, L Poissant, A Huang et al., "Estimating the information gap between emergency department

records on community medication versus online access to community pharmacy records", Journal of the

American Medical Informatics Association, vol. 21, no. 3, pp. 391-398, 2014.

[7]. L. Zhang, G. Ahn, and B. Chu. A role-based delegation framework for healthcare information systems. In

ACM Symposium on Access Control Models And Technologies (SACMAT), page, 2002

