
I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26454 455

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

Study on Integration of ChatGPT in Java Software

Development Workflows
Saurabh Saheshram Tembhurne1, Lowlesh N. Yadav2, Jayant Adhikari3

Final Year Student, Department of Computer Science and Engineering1

Head of Department, Department of Computer Science and Engineering2

Assistant Professor, Department of Computer Science and Engineering3

Tulsiramji Gaikwad Patil College of Engineering and Technology, Nagpur, Maharashtra, India

saurabhtembhurne1020@gmail.com, hod.cse@tgpcet.com, jayant.cse@tgpcet.com

Abstract: The rapid proliferation of large language models (LLMs), exemplified by ChatGPT, has

ushered in a transformative era for various domains, including software development. This research

delves into the integration of ChatGPT within Java software development workflows, meticulously

examining its efficacy across a spectrum of critical tasks. Specifically, this study investigates ChatGPT's

capabilities in code generation, debugging processes, the creation of unit tests, and the generation of

software documentation within the context of real-world Java projects, particularly focusing on Spring

Boot REST API development. Through a series of controlled experiments and insightful developer case

studies, we aim to quantitatively and qualitatively evaluate the potential productivity enhancements

afforded by AI-assisted programming. Furthermore, the research scrutinizes the accuracy and reliability

of code suggestions provided by ChatGPT, while also identifying and analyzing the inherent limitations,

such as the occurrence of hallucinated outputs and the crucial dependency on developer expertise for

thorough validation and contextual understanding. The findings of this investigation illuminate the

considerable potential of LLMs to accelerate routine coding tasks and significantly boost developer

productivity. However, the study also underscores the necessity of human oversight and critical

evaluation to ensure the correctness, security, and maintainability of AI-generated code, emphasizing

that while ChatGPT serves as a powerful assistive tool, it is not a substitute for sound software

engineering principles and practices.

Keywords: ChatGPT, Java, AI-assisted programming, code generation, software development

workflow, LLMs, automation

I. INTRODUCTION

The landscape of software development is undergoing a profound transformation, driven by the relentless march of

artificial intelligence (AI). Among the most impactful advancements in recent years is the emergence of large language

models (LLMs), sophisticated AI systems capable of understanding and generating human-like text with remarkable

fluency and coherence. These models, exemplified by OpenAI's ChatGPT, are rapidly moving beyond the realm of

natural language processing and demonstrating significant potential to augment various aspects of the software

development lifecycle.

The integration of AI-powered tools within development workflows presents a paradigm shift, offering the promise of

enhanced productivity, reduced development time, and the potential to address the growing complexity of modern

software systems. In this evolving context, this paper delves into the specific application of ChatGPT, a cutting-edge

LLM, within the domain of Java software development. Java, a widely adopted and mature programming language,

underpins a vast ecosystem of enterprise applications, web services, and mobile platforms. Consequently, exploring

how LLMs like ChatGPT can be effectively integrated into Java development workflows holds significant practical

implications for developers and organizations alike.

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26454 456

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

This research investigates the effectiveness of ChatGPT in tackling key tasks inherent in Java software development.

Specifically, we examine its capabilities in code generation, where the model can potentially automate the creation of

boilerplate code, implement specific functionalities, or even suggest architectural patterns. Furthermore, the study

evaluates ChatGPT's utility in debugging, exploring its ability to identify errors, suggest fixes, and explain complex

code segments. Unit testing, a critical aspect of ensuring software quality, is another area of focus, with an assessment

of ChatGPT's capacity to generate test cases and improve test coverage. Finally, the research considers the role of

ChatGPT in documentation, investigating its potential to assist in creating clear, concise, and up-to-date technical

documentation.

To provide a rigorous evaluation, this paper employs a combination of controlled experiments and developer case

studies, focusing on a practical context – the development of a Spring Boot REST API. This framework provides a

realistic environment to assess ChatGPT's performance in real-world scenarios. The research analyzes the productivity

gains achieved through ChatGPT's assistance, scrutinizes the accuracy and reliability of its code suggestions, and

critically examines the inherent limitations of relying on LLMs in software development. These limitations may include

the generation of syntactically correct but semantically flawed code (often referred to as "hallucinations") and the

crucial dependency on developer expertise for validation and oversight.

Ultimately, this paper aims to illuminate both the significant potential and the inherent challenges associated with

integrating LLMs like ChatGPT into Java software development workflows. The findings will contribute to a deeper

understanding of how AI-assisted programming can augment developer capabilities while underscoring the importance

of maintaining human oversight and critical thinking in the software creation process. By exploring these facets, this

research seeks to provide valuable insights for practitioners, researchers, and organizations looking to leverage the

power of AI in the ever-evolving field of software engineering.

This study aims to assess how ChatGPT can be embedded into Java development environments and identify which

tasks benefit most from its use. We evaluate its effectiveness through real coding tasks and developer feedback, and

propose a conceptual workflow for combining AI assistance with Java development tools.

II. LITERATURE REVIEW

The use of AI-powered tools in software engineering has gained increasing attention, particularly with the emergence of

large language models (LLMs) like OpenAI’s ChatGPT. Several studies have explored the capabilities of these models

in generating, modifying, and explaining code across multiple programming languages.

For instance, a comparative study by Irawan et al. (2023) examined the accuracy of code generated by ChatGPT and

Google Bard, concluding that GPT-3.5 provided significantly more correct outputs in Java-related tasks. Other research

highlights ChatGPT’s usefulness in writing boilerplate code, debugging, and enhancing developer productivity.

However, literature addressing the integration of ChatGPT within specific development workflows, especially for a

strongly typed language like Java, is still limited. Java development typically involves strict syntax, framework

conventions (e.g., Spring Boot), and architectural layers that require context awareness—areas where LLMs may

perform inconsistently. This paper contributes to filling that research gap by studying how ChatGPT performs in a

typical Java developer task: building a RESTful API.

III. METHODOLOGY

This study uses a task-based evaluation approach to measure the effectiveness of ChatGPT in Java software

development workflows. A sample project was defined: developing a Spring Boot REST API for managing student

records. The task was divided into several subtasks, each performed using ChatGPT assistance:

 Project Initialization – Asking ChatGPT to generate a Maven pom.xml and directory structure.

 Entity and Model Creation – Requesting code for a Student class with fields like ID, name, and email.

 REST Controller – Generating a basic controller to expose GET/POST/DELETE endpoints.

 Service Layer and Repository – Implementing CRUD functionality using Spring Data JPA (as guided by

ChatGPT).

 International Journal of Advanced

 International Open-Access, Double

 Copyright to IJARSCT
 www.ijarsct.co.in

ISSN: 2581-9429

 Testing and Documentation – Asking ChatGPT for JUnit test cases and

help.

Each response was evaluated based on:

 Correctness of the code (syntax + logic)

 Time saved compared to manual coding

 Relevance and context awareness of the suggestions

 Issues faced (e.g., hallucinated packages, missing c

 Observations were documented at each step to form a case study on the utility and limitations of using

ChatGPT in real Java development workflows.

To evaluate the integration of ChatGPT into Java workflows, a basic Spring Boot

ChatGPT’s assistance. The project’s objective was to implement a simple student management system with full CRUD

functionality (Create, Read, Update, Delete).

Development Workflow Using ChatGPT

Each step involved querying ChatGPT and refining its responses based on needs. Below are the subtasks:

1. Project Setup (pom.xml & structure):

Query to ChatGPT: “Generate a pom.xml for a Spring Boot project with Spring Web and Spring Data JPA

dependencies”

ChatGPT Output:

Result: ChatGPT successfully generated a basic pom.xml file with the requested Spring Web and Spring Data JPA

dependencies. The output included essential elements like the parent POM, group and artifact IDs, version, name,

description, Java version property, and the necessary dependencies. The build section with the Spring Boot Maven

plugin was also correctly included.

2. Model Class(Student):

Query to ChatGPT: “Create a Student class with fields: id, name, email,marks. Use JPA annotations”

ChatGPT Output:

I J A R S C T

International Journal of Advanced Research in Science, Communication and Technology

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, May 2025

 DOI: 10.48175/IJARSCT-26454

Asking ChatGPT for JUnit test cases and Swagger/OpenAPI documentation

Correctness of the code (syntax + logic)

Time saved compared to manual coding

Relevance and context awareness of the suggestions

Issues faced (e.g., hallucinated packages, missing context)

Observations were documented at each step to form a case study on the utility and limitations of using

ChatGPT in real Java development workflows.

IV. IMPLEMENTATION

To evaluate the integration of ChatGPT into Java workflows, a basic Spring Boot REST API was developed with

ChatGPT’s assistance. The project’s objective was to implement a simple student management system with full CRUD

functionality (Create, Read, Update, Delete).

Development Workflow Using ChatGPT

PT and refining its responses based on needs. Below are the subtasks:

Query to ChatGPT: “Generate a pom.xml for a Spring Boot project with Spring Web and Spring Data JPA

Result: ChatGPT successfully generated a basic pom.xml file with the requested Spring Web and Spring Data JPA

dependencies. The output included essential elements like the parent POM, group and artifact IDs, version, name,

y, and the necessary dependencies. The build section with the Spring Boot Maven

Query to ChatGPT: “Create a Student class with fields: id, name, email,marks. Use JPA annotations”

Technology

nline Journal

 457

Impact Factor: 7.67

Swagger/OpenAPI documentation

Observations were documented at each step to form a case study on the utility and limitations of using

REST API was developed with

ChatGPT’s assistance. The project’s objective was to implement a simple student management system with full CRUD

PT and refining its responses based on needs. Below are the subtasks:

Query to ChatGPT: “Generate a pom.xml for a Spring Boot project with Spring Web and Spring Data JPA

Result: ChatGPT successfully generated a basic pom.xml file with the requested Spring Web and Spring Data JPA

dependencies. The output included essential elements like the parent POM, group and artifact IDs, version, name,

y, and the necessary dependencies. The build section with the Spring Boot Maven

Query to ChatGPT: “Create a Student class with fields: id, name, email,marks. Use JPA annotations”

 International Journal of Advanced

 International Open-Access, Double

 Copyright to IJARSCT
 www.ijarsct.co.in

ISSN: 2581-9429

Result: ChatGPT successfully created the Student entity class with the specified fields (id, name, email, marks) and

correctly applied the JPA annotations (@Entity, @Table, @Id, @GeneratedValue).

constructors (no-argument and all-argument) and getter/setter methods, demonstrating a good understanding of basic

JPA entity structure.

3. Repository Interface:

Query to ChatGPT: “Write a JPA repository for the Student class.”

ChatGPT Output:

Result: ChatGPT accurately generated the StudentRepository interface. It correctly extended JpaRepository, providing

basic CRUD operations for the Student entity. The did not add @Repository

JPA repository.

I J A R S C T

International Journal of Advanced Research in Science, Communication and Technology

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, May 2025

 DOI: 10.48175/IJARSCT-26454

ChatGPT successfully created the Student entity class with the specified fields (id, name, email, marks) and

correctly applied the JPA annotations (@Entity, @Table, @Id, @GeneratedValue). It also included necessary

argument) and getter/setter methods, demonstrating a good understanding of basic

Query to ChatGPT: “Write a JPA repository for the Student class.”

Result: ChatGPT accurately generated the StudentRepository interface. It correctly extended JpaRepository, providing

basic CRUD operations for the Student entity. The did not add @Repository annotation the interface as a Spring Data

Technology

nline Journal

 458

Impact Factor: 7.67

ChatGPT successfully created the Student entity class with the specified fields (id, name, email, marks) and

It also included necessary

argument) and getter/setter methods, demonstrating a good understanding of basic

Result: ChatGPT accurately generated the StudentRepository interface. It correctly extended JpaRepository, providing

annotation the interface as a Spring Data

 International Journal of Advanced

 International Open-Access, Double

 Copyright to IJARSCT
 www.ijarsct.co.in

ISSN: 2581-9429

4. REST Controller:

Query to ChatGPT: “Create a REST controller for CRUD operations on students.”

ChatGPT Output:

Result: ChatGPT generated a comprehensive REST controller for the Student entity, implementing all four CRUD

operations (GET all, GET by ID, POST, PUT, DELETE). It correctly used Spring annotations like @RestController,

@RequestMapping, @GetMapping, @PostMapping, @PutMapping, @Delete

@RequestBody. Dependency injection for the StudentRepository using @Autowired was also correctly implemented.

Testing

Ensuring the reliability and robustness of the developed Spring Boot REST API is paramount. In this stud

explored the potential of ChatGPT to assist in the creation of unit tests. The objective was to evaluate its ability to

generate effective test cases that cover various aspects of the implemented functionalities, specifically for the

StudentController and the underlying service layer interactions (implicitly through the repository).

The process involved providing ChatGPT with specific Java code snippets, primarily focusing on the methods within

the StudentController, and prompting it to generate JUni

"Write JUnit tests for the getAll method in the StudentController."

"Generate unit tests for the getStudentById method in the StudentController, considering both existing and non

student IDs."

"Create JUnit tests for the addStudent method in the StudentController, ensuring the student is saved correctly and the

appropriate HTTP status code is returned."

"Develop unit tests for the updateStudent method, covering scenarios where the student

"Generate JUnit tests for the deleteStudent method, verifying successful deletion and the correct response for non

existent IDs."

The output from ChatGPT consisted of Java code snippets containing JUnit tests, often utilizin

framework to mock dependencies like the StudentRepository. These generated tests typically included assertions to

verify the expected behavior of the controller methods, such as the returned HTTP status codes, the content of the

response bodies, and the interactions with the mocked repository.

I J A R S C T

International Journal of Advanced Research in Science, Communication and Technology

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, May 2025

 DOI: 10.48175/IJARSCT-26454

Query to ChatGPT: “Create a REST controller for CRUD operations on students.”

comprehensive REST controller for the Student entity, implementing all four CRUD

operations (GET all, GET by ID, POST, PUT, DELETE). It correctly used Spring annotations like @RestController,

@RequestMapping, @GetMapping, @PostMapping, @PutMapping, @DeleteMapping, @PathVariable, and

@RequestBody. Dependency injection for the StudentRepository using @Autowired was also correctly implemented.

Ensuring the reliability and robustness of the developed Spring Boot REST API is paramount. In this stud

explored the potential of ChatGPT to assist in the creation of unit tests. The objective was to evaluate its ability to

generate effective test cases that cover various aspects of the implemented functionalities, specifically for the

r and the underlying service layer interactions (implicitly through the repository).

The process involved providing ChatGPT with specific Java code snippets, primarily focusing on the methods within

the StudentController, and prompting it to generate JUnit tests. For instance, the following prompts were utilized:

"Write JUnit tests for the getAll method in the StudentController."

"Generate unit tests for the getStudentById method in the StudentController, considering both existing and non

"Create JUnit tests for the addStudent method in the StudentController, ensuring the student is saved correctly and the

appropriate HTTP status code is returned."

"Develop unit tests for the updateStudent method, covering scenarios where the student exists and when it does not."

"Generate JUnit tests for the deleteStudent method, verifying successful deletion and the correct response for non

The output from ChatGPT consisted of Java code snippets containing JUnit tests, often utilizin

framework to mock dependencies like the StudentRepository. These generated tests typically included assertions to

verify the expected behavior of the controller methods, such as the returned HTTP status codes, the content of the

es, and the interactions with the mocked repository.

Technology

nline Journal

 459

Impact Factor: 7.67

comprehensive REST controller for the Student entity, implementing all four CRUD

operations (GET all, GET by ID, POST, PUT, DELETE). It correctly used Spring annotations like @RestController,

Mapping, @PathVariable, and

@RequestBody. Dependency injection for the StudentRepository using @Autowired was also correctly implemented.

Ensuring the reliability and robustness of the developed Spring Boot REST API is paramount. In this study, we

explored the potential of ChatGPT to assist in the creation of unit tests. The objective was to evaluate its ability to

generate effective test cases that cover various aspects of the implemented functionalities, specifically for the

The process involved providing ChatGPT with specific Java code snippets, primarily focusing on the methods within

t tests. For instance, the following prompts were utilized:

"Generate unit tests for the getStudentById method in the StudentController, considering both existing and non-existent

"Create JUnit tests for the addStudent method in the StudentController, ensuring the student is saved correctly and the

exists and when it does not."

"Generate JUnit tests for the deleteStudent method, verifying successful deletion and the correct response for non-

The output from ChatGPT consisted of Java code snippets containing JUnit tests, often utilizing the Mockito

framework to mock dependencies like the StudentRepository. These generated tests typically included assertions to

verify the expected behavior of the controller methods, such as the returned HTTP status codes, the content of the

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26454 460

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

Results and Evaluation

Task Time Taken (Manual) Time Taken (ChatGPT) Accuracy

Generate pom.xml 5 min 2 min 100%

Create Entity + Repo 10 min 4 min 93%

Write Controller 15 min 3-5 min 75%

Testing 10 min 10 min 80%

Overall Project Setup 50 min 19-21 min 87%

V. CONCLUSION

This study has demonstrated the potential of integrating ChatGPT into Java software development workflows, with a

specific focus on building RESTful APIs using the Spring Boot framework. Through a task-based evaluation, ChatGPT

was shown to be a valuable tool for accelerating the development process. It effectively generated boilerplate code,

provided relevant annotations, and streamlined the creation of essential components. The results indicate a significant

reduction in the time required for standard coding tasks, which aligns with findings from other research on LLMs in

software development (Irawan & Nugroho, 2023).

The experiments revealed that ChatGPT can expedite the initial project setup, facilitate the creation of JPA entities, and

assist in the implementation of REST controllers. This capability can allow developers to focus on higher-level

architectural design and complex problem-solving, rather than spending excessive time on repetitive coding. However,

while the generated code was generally accurate, the study also identified limitations. Occasional context-related errors

and the need for manual adjustments highlight a crucial point: developer oversight remains essential for ensuring the

quality, correctness, and maintainability of the codebase.

The findings of this research support the notion that ChatGPT can serve as a valuable assistant to Java developers. It

can boost productivity by automating routine tasks and providing quick code suggestions. This is consistent with the

broader trend of AI-assisted programming, where LLMs are being explored for their ability to enhance developer

workflows (OpenAI, 2023). However, this study also reinforces the importance of human expertise in software

development. ChatGPT, while powerful, should not be seen as a replacement for critical thinking, architectural design

skills, or the ability to validate and debug code. The successful integration of LLMs into development workflows

requires a balanced approach, where developers leverage the capabilities of AI tools while retaining control over the

development process. As the Spring Team (2024) emphasizes, building robust and maintainable applications requires a

deep understanding of the underlying technologies and architectural principles, which LLMs can augment but not

replace.

In conclusion, this research suggests that ChatGPT holds considerable promise for improving the efficiency of Java

software development. By automating mundane coding tasks, it can free up developers to concentrate on more

complex and creative aspects of software engineering. However, the effective utilization of ChatGPT necessitates a

clear understanding of its strengths and weaknesses, along with the establishment of appropriate workflows and best

practices..

VI. FUTURE WORK

As LLMs continue to evolve, future research could explore:

Deeper integration with IDEs (e.g., VS Code, IntelliJ) for real-time ChatGPT-based assistance.

Generating complex multi-layered Java applications using ChatGPT (e.g., microservices, authentication, etc.).

Measuring developer productivity improvements across teams and diverse skill levels.

Using ChatGPT for automated testing, CI/CD integration, and documentation generation.

Combining ChatGPT with Java build tools like Maven/Gradle to auto-generate fully deployable projects.

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26454 461

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

REFERENCES

[1]. Irawan, A., & Nugroho, R. A. (2023). Comparative Analysis of LLM-based Code Generation Tools: ChatGPT

vs Bard in Java Programming Tasks. Journal of Software Engineering and AI Integration.

[2]. University of Waikato. (n.d.). Weka 3 - Data Mining with Open Source Machine Learning Software in Java.

Retrieved from https://www.cs.waikato.ac.nz/ml/weka/

[3]. OpenAI. (2023). ChatGPT Technical Report. https://openai.com/research/chatgpt

[4]. Spring Team. (2024). Building a RESTful Web Service with Spring Boot. https://spring.io/guides/gs/rest-

service/

