
I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26402 6

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

Real-Time Face Recognition and Occupancy

Logging System Using Deep Learning Models
Mr. K. Pazhanivel1, S. Dinesh2, S. Dushyanth3, G. Harish Thiyagarajan4, S. Logesh Kumar5

Assistant Professor, Department of Computer Science and Engineering1

 Students, Department of Computer Science and Engineering2,3,4,5

 Anjalai Ammal Mahalingam Engineering College, Kovilvenni, India
1pazhanicse@gmail.com, 2dineshsundarrajan2003@gmail.com, 3dushyanthshanmugam@gmail.com,

4harisht24052004@gmail.com, 5logeshkumar2403@gmail.com

Abstract: In this modern era, which is becoming more and more reliant on intelligent surveillance

systems, our proposed system, 'Real-Time Face Recognition and Occupancy Logging System Using

Deep Learning Models' introduces a unified platform for real-time human detection, identification and

presence logging based on live camera feeds. The absence of automatic identification and organized log

storage in conventional systems often hinders efficiency. Furthermore, many of the systems currently

available either lack centralized log availability, easy configuration, integration within existing systems

or require expensive hardware. Our system overcomes these drawbacks by using an efficient, scalable

and streamlined approach but having comparatively lesser hardware requirements. This system uses

YOLOv8 for person detection, DeepSORT for person tracking and InsightFace for face recognition.

These faces are compared with previously stored faces and the backend generates a log denoting the

occupancy or a presence of a person within a room or a view. These logs are stored in Firebase and

with the help of a user-friendly mobile application, people can view the present or past occupancy

details and logs. The system is aimed to be balanced between performance and seamless integration

into existing systems with minimal hardware requirements

Keywords: Real-time face recognition, YOLOv8, DeepSORT, InsightFace, object tracking, identity

association, Firebase Firestore, human detection, face embeddings, surveillance system, automated

attendance, AI-based logging, ReID, smart monitoring, computer vision

I. INTRODUCTION

Intelligent surveillance systems are becoming crucial in this modern era, to ensure security, access protections and

immediate identification of unauthorized persons at home, office, public and private environments. Traditional

surveillance systems have limitations such as real-time identification, quick retrieval, efficient log management or

centralized monitoring capabilities, making them undesirable in this modern era. To bridge this gap, we present our

system - Real-Time Face Recognition and Occupancy Logging System Using Deep Learning Models, a real-time,

camera-based identity tracking and logging solution that combines cutting-edge computer vision models and a

minimalistic, user-friendly interface. The system is designed to detect human presence in video feeds, associate tracked

individuals with recognized identities, and generate structured logs that are accessible through a custom-built user

interface.

The system aims to combine the high-precision person detection of YOLOv8, robust multi-tracking abilities of

DeepSORT and state-of-the-art face recognition by InsightFace, to allow for a rapid real-time human detection,

identification and individual tracking, even under brief visual occlusions. DeepSORT's inbuilt Re-ID technology

ensures that, recognized identities persist their identified identity across a view, thereby improving continuity in the

logs. A dynamically updated presence or occupancy logs is maintained, that includes time-stamps and identification and

uploads this information to FireStore Realtime Database, for efficient cross-device access and backup. This enables

people to view the real-time occupancy status and past entries of their place, from a remote location. The UI is designed

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26402 7

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

to provide intuitive controls to start/stop monitoring and also view real-etime or historical logs, so that they can be sure

about the presence of people at their premises or take quick action if something is wrong. The UI is designed in such a

way that, even non-technical users can view the status of their homes with ease.

Many existing systems either require high-end camera and processing hardware, cloud-based subscriptions or operate

solely on static image inputs, but this system is designed to run on local hardware in real-time. It also supports real-time

camera feeds and video-file inputs, allowing a flexible way of operation. The backend architecture is designed with

modularity in mind and also comes with a minimalistic UI built with PyQt5, to allow users to interact with the backend.

A Face Data Management module is included, that allows users to dynamically register, update or remove faces and

names of known individuals for identification. This enables real-world deployment easier as the number of known

persons or their names may change. An end-to-end pipeline from face-detection to logging is provided by this system,

that eliminates the limitations of conventional systems and reduces the burden on the security measures that have to be

undertaken by a home-owner, offices, schools, and other organizations. This allows for a low-cost, customizable, and

efficient solution that provides actionable, accurate and real-time data, for users who have security and surveillance as a

concern their mind.

II. LITERATURE REVIEW

Face recognition and intelligent surveillance systems have seen rapid advancements in recent years, propelled by

innovations in deep learning architectures, tracking algorithms, and cloud-based data infrastructure. These systems are

central to applications such as access control, attendance logging, behavioral analytics, and real-time security

monitoring. A broad body of work has contributed to the development of modular, real-time, and scalable solutions in

this space. Our system builds upon this foundation, integrating multiple state-of-the-art components to enable a high-

performance surveillance pipeline.

One of the most influential contributions to face recognition is the FaceNet model by Schroff et al. [1], which

introduced a unified embedding approach using triplet loss to learn a Euclidean space where similar faces are clustered

together. This method fundamentally shifted the task from classification to metric learning, enabling scalable and robust

face comparison. Our system adopts this core concept of facial embeddings, applying it through InsightFace’s

architecture to compare detected face crops against a database of known embeddings using cosine similarity.

The embedding strategy we use is directly informed by InsightFace, a modern framework that implements ArcFace loss

for discriminative feature extraction. While InsightFace itself is not one of our primary cited works, it builds upon

principles established by FaceNet and is operationalized in our system as the core face recognition module. For face

crops to be valid inputs for embedding, precise detection and alignment are critical.

In terms of object detection, the YOLO (You Only Look Once) family of models, particularly YOLOv8 [2], plays a

pivotal role in our pipeline. Originally introduced by Redmon et al. [2], YOLO redefined object detection as a single-

pass regression problem, drastically reducing latency compared to region-based methods. The current YOLOv8

implementation, developed by Ultralytics, delivers high-accuracy real-time detection on consumer-grade GPUs and

CPUs. In our system, it serves as the entry point for identifying all “person” class objects within a frame, filtering out

irrelevant regions before they are passed into the tracking pipeline.

To maintain identity across frames—even during partial occlusions or re-entries—we use DeepSORT [3], a widely

adopted multi-object tracking algorithm that combines motion prediction with deep appearance embeddings. This

allows individuals to retain consistent tracking IDs even when face recognition temporarily fails or is skipped. By

integrating DeepSORT before facial identification, we can ensure that logs are accurate and that unknown individuals

are not redundantly re-logged on each frame.

Preprocessing is another essential component in face recognition accuracy. For this, MTCNN (Multi-task Cascaded

Convolutional Networks) [6] is widely used to perform real-time face detection and alignment, a technique crucial for

ensuring that facial embeddings remain consistent across varied angles and lighting conditions. Our system uses aligned

crops generated by MTCNN (or an equivalent model) as inputs to the embedding network, significantly improving

match accuracy over raw crops.

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26402 8

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

Earlier pioneering work by Taigman et al. [4] on DeepFace also laid important groundwork. DeepFace emphasized the

importance of 3D face alignment and frontalization, which improved verification performance and set a precedent for

subsequent models like FaceNet and InsightFace. The emphasis on preprocessing from DeepFace directly influences

our use of facial landmarking and alignment.

Our logging and data storage component is built on top of Firebase Firestore, which offers a real-time, cloud-hosted

NoSQL solution [9]. Firebase's SDK supports automatic syncing across devices and enables log-based triggers on both

web and mobile clients. Logs such as person entry, exit, and checkpoint presence are stored in structured documents,

facilitating both query efficiency and mobile integration.

The OpenCV and Dlib libraries [8] also contribute foundational tools for frame acquisition, ROI extraction, face

landmarking, and display. Even though more modern models handle most of the recognition tasks, OpenCV remains

the bridge between raw video and preprocessed input. Its versatility and hardware compatibility make it indispensable

for modular video processing pipelines.

In early prototyping, inspiration was also drawn from Goyal et al. [10], who explored face detection and tracking using

classical OpenCV techniques such as Haar cascades. While our system ultimately transitioned to deep learning

methods, the architectural insights from such classical systems helped shape our log structure and modular process

design.

To ensure that the system remains lightweight and responsive even on mid-tier machines, we draw on the design

philosophy behind MobileNets [7]. MobileNets introduced depthwise separable convolutions to drastically reduce

computational load, enabling CNN deployment on mobile and embedded devices. DeepSORT’s appearance

embedding, which relies on a lightweight CNN backbone, benefits from the architectural optimizations proposed in

MobileNets, allowing it to run efficiently in real-time alongside other components.

Finally, in addressing unknown faces and manual labeling workflows, we adopt the idea of deferred identity assignment

as proposed in Ghimire et al. [5]. Their full-stack real-time recognition system included functionality for logging

unknown individuals, storing their embeddings, and updating the log retroactively once they are labeled by a user. We

use a similar feedback loop, storing unidentified embeddings temporarily and allowing administrators to label them

through a frontend interface, which updates historical logs with the correct name.

This body of work forms the technical and conceptual backbone of our system. By combining YOLOv8 for detection,

DeepSORT for tracking, MTCNN for alignment, InsightFace for embedding, and Firebase for logging, we present a

complete and extensible surveillance pipeline. Each component was selected based on proven real-world performance

and scholarly backing, ensuring our system is both scalable and robust.

III. PROPOSED METHODOLOGY

The proposed system integrates state-of-the-art deep learning models for real-time face recognition and occupancy

logging using live camera feeds. The architecture combines YOLOv8 for robust person detection, DeepSORT for

consistent object tracking, and InsightFace for highly accurate face embedding and identification. The system is

designed to process each video frame efficiently, associate detected faces with unique track IDs, and log entry, exit, and

checkpoint events to a cloud database using Firebase. By coupling detection, tracking, and face recognition in a

modular and optimized pipeline, the system ensures both scalability and accuracy in multi-camera environments. The

system is divided into modular components with well-defined responsibilities:

Person Detection:

YOLOv8 is used as the primary object detector due to its speed and accuracy. It detects humans in video frames and

provides bounding box coordinates for each.

Object Tracking:

DeepSORT assigns a persistent Track ID to each detected person, using Kalman filtering and appearance feature

matching. This helps maintain identity continuity even during brief occlusions.

 International Journal of Advanced

 International Open-Access, Double

 Copyright to IJARSCT
 www.ijarsct.co.in

ISSN: 2581-9429

Face Detection and Recognition:

InsightFace is used for face detection and feature extraction. For each person’s face detected within a bounding box, a

512-dimensional embedding is generated.

known individuals. If no match is found below a certain threshold, the individual is marked as "Unknown."

Re-check Mechanism:

Unknown embeddings are stored and periodically re

using the person’s Track ID, allowing retroactive correction of identities.

Logging System:

Logs include entry, exit, and periodic presence data, stored in Firestore using ISO

empty events are also logged when no individuals remain tracked.

Database:

Firebase Firestore acts as the real-time NoSQL database for log storage and querying. Known face embeddings and

user-assigned names are stored in structured collections

Mobile Application:

Built using Flutter or React Native, the app interfaces with Firebase to provide a real

can filter by room or time and assign names to unknowns.

Optimization Techniques:

• Frame skipping reduces redundant detection overhead.

• Batched embedding generation improves throughput.

• GPU acceleration ensures real-time performance on mid

• Async re-checks ensure main inference loop is unaffected by periodic face database comparisons.

IV.

Figure 1. Proposed architecture overvi

I J A R S C T

International Journal of Advanced Research in Science, Communication and Technology

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, May 2025

 DOI: 10.48175/IJARSCT-26402

nsightFace is used for face detection and feature extraction. For each person’s face detected within a bounding box, a

dimensional embedding is generated. Embeddings are matched using cosine similarity against a local database of

known individuals. If no match is found below a certain threshold, the individual is marked as "Unknown."

Unknown embeddings are stored and periodically re-checked. If a match is later found, logs are automatically updated

using the person’s Track ID, allowing retroactive correction of identities.

Logs include entry, exit, and periodic presence data, stored in Firestore using ISO-timestamped docu

empty events are also logged when no individuals remain tracked.

time NoSQL database for log storage and querying. Known face embeddings and

assigned names are stored in structured collections for easy access.

Built using Flutter or React Native, the app interfaces with Firebase to provide a real-time dashboard of entries. Users

can filter by room or time and assign names to unknowns.

reduces redundant detection overhead.

Batched embedding generation improves throughput.

time performance on mid-tier systems.

checks ensure main inference loop is unaffected by periodic face database comparisons.

IV. SYSTEM ARCHITECTURE

Figure 1. Proposed architecture overviw

Technology

Reviewed, Refereed, Multidisciplinary Online Journal

 9

Impact Factor: 7.67

nsightFace is used for face detection and feature extraction. For each person’s face detected within a bounding box, a

Embeddings are matched using cosine similarity against a local database of

known individuals. If no match is found below a certain threshold, the individual is marked as "Unknown."

ked. If a match is later found, logs are automatically updated

timestamped documents. Room

time NoSQL database for log storage and querying. Known face embeddings and

time dashboard of entries. Users

checks ensure main inference loop is unaffected by periodic face database comparisons.

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26402 10

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

Figure 2. Workflow between Backend and Database

Figure 3. Workflow between Mobile Application and Database

Module Description

The proposed Face Recognition and Tracking System (FRTS) is divided into six core modules, each responsible for a

distinct task in the overall pipeline. These modules work in synergy to enable real-time person tracking, identity

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26402 11

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

recognition, logging, and interaction through a mobile interface. Below is a detailed decomposition of each module,

including internal mechanisms and optimization strategies.

A. Person Detection

Person detection is the foundational step of the system, responsible for identifying all human figures present in a video

frame. This module employs YOLOv8 (You Only Look Once, version 8), a state-of-the-art object detection model

developed by Ultralytics. YOLOv8 was selected for its exceptional trade-off between speed and accuracy, making it

highly suitable for real-time applications on consumer-grade hardware. The model is pre-trained on the COCO dataset

and fine-tuned to exclusively detect the person class, reducing computational overhead and improving inference time.

Frame skipping techniques are applied, where detection is performed every N frames, and the intermediate frames rely

on the tracking module to propagate identities.

B. Object Tracking

The Object Tracking module is implemented using DeepSORT (Deep Simple Online and Realtime Tracking). This

algorithm enhances the basic SORT tracker by incorporating a Re-Identification (Re-ID) component that uses cosine

similarity between deep appearance features to maintain consistent identities across frames.

Each detected person is assigned a unique Track ID, which persists across frames unless the person exits the frame or

is occluded for an extended duration. DeepSORT integrates a Kalman Filter for motion prediction and a Hungarian

Algorithm for optimal assignment between new detections and existing tracks.

Optimization techniques include:

• Adjusting max_iou_distance and nn_budget parameters to maintain ID consistency.

• Batch processing of appearance features to reduce GPU overhead.

• Using the Track ID as a consistent identifier across multiple modules, including face recognition and

logging.

C. Face Detection & Recognition

This module performs facial recognition on detected persons using the InsightFace framework. Once a person is

tracked, their face crops are then passed to InsightFace's ResNet-based ArcFace model, which outputs a 512-

dimensional embedding vector for each face.

Face Matching Strategy:

• Embeddings are compared using cosine similarity against a local database of known faces.

• If similarity falls below a defined threshold (0.5), the person is classified as a known individual; otherwise,

they are temporarily logged as "Unknown".

• To optimize performance, face recognition is not performed on every frame but rather at fixed intervals or

during key state transitions (entry, stillness, exit).

Face Re-Check Mechanism: Unknown face embeddings are stored in a temporary cache and periodically re-evaluated

against the known face database. If a match is later found, the individual’s earlier logs are retroactively updated using

their persistent Track ID.

D. Logging System

The Logging System is responsible for storing meaningful events in the surveillance timeline. Events include:

• Entry and exit of individuals.

• Interval-based presence logging (e.g., every 5 minutes).

• Room empty state (when no persons are being tracked).

Logs are structured as JSON documents containing metadata such as:

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26402 12

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

• Track ID

• Assigned name (or "Unknown")

• Timestamps

• Camera/room ID

Optimization Strategies:

Document IDs use ISO 8601 timestamps (e.g., 2025-04-19T11:23:45.123Z) for naturally sorted log retrieval.

Redundant logs are avoided by checking the last state and logging only significant transitions.

E. Database

The system leverages Google Firebase Firestore as its cloud-based NoSQL database. Firestore offers real-time

syncing with mobile applications and scalable document storage. Logs are stored in Firestore collections partitioned by

camera or room ID for faster queries and efficient data segmentation. The face database is maintained locally in the

form of serialized embedding vectors with names. This ensures fast lookup during inference and can be periodically

synced to the cloud for backup or multi-device availability.

• Firestore integration enables:

• Real-time updates to mobile applications.

• Easy querying and filtering by timestamp, room, or person identity.

• Seamless support for adding or deleting faces through the UI or mobile app.

F. Mobile Application

The mobile application provides a lightweight interface for user interaction and visualization. Built using React Native,

the app connects to Firebase via its SDK and offers the following features:

• View logs by camera or time.

• Filter by known/unknown persons.

• View timestamps of entries/exits.

• Assign names to unknown individuals.

• When a user assigns a name to an unknown person, the embedding is immediately re-classified, and all related

logs are updated to reflect the correct name.

V. IMPLEMENTATION

The proposed face recognition and logging system has been implemented as a modular desktop application using

Python and PyQt. The backend integrates YOLOv8 for person detection, DeepSORT for tracking, and InsightFace for

accurate face recognition. The frontend UI is built using PyQt6, offering camera selection, real-time video feeds, log

viewing, and face database management.

A. System Architecture

The system follows a threaded design, where each camera feed is managed by a separate thread (FeedWorker). This

ensures that multiple camera inputs can be handled concurrently without significant performance drops. Logs and

system states are maintained using Firebase Firestore, while face image data is stored as base64-encoded strings.

B. UI Components

The PyQt-based user interface includes:

A video panel for displaying real-time feeds.

A log table that shows detection logs with timestamps.

A control panel for selecting input source, camera ID, and toggling Firebase logging.

Dialogs for adding and removing face data with image previews.

 International Journal of Advanced

 International Open-Access, Double

 Copyright to IJARSCT
 www.ijarsct.co.in

ISSN: 2581-9429

Figur

C. Threaded Feed Handling

Each camera feed is processed in a dedicated thread to maintain responsiveness. The FeedWorker class runs object

detection, tracking, and face matching independently for each input source. This archit

multiple video streams in real time.

D. Face Data Management

The system allows users to add new face images through a UI dialog. These are encoded and stored in Firestore with

associated face embeddings generated by Insigh

interactive interface.

Figure 5. Face Management Dialog

E. Logging and Cloud Integration

All detection events are logged to Firebase Firestore with event types such as entry, exit, name_

and checkpoint. These logs can later be visualized or exported. The system is also designed to reconstruct live room

status from log data without requiring real-

I J A R S C T

International Journal of Advanced Research in Science, Communication and Technology

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, May 2025

 DOI: 10.48175/IJARSCT-26402

Figure 4. Main Application Window

Each camera feed is processed in a dedicated thread to maintain responsiveness. The FeedWorker class runs object

detection, tracking, and face matching independently for each input source. This architecture is essential for handling

The system allows users to add new face images through a UI dialog. These are encoded and stored in Firestore with

associated face embeddings generated by InsightFace. Deletion of face records is also supported through a simple

Figure 5. Face Management Dialog

All detection events are logged to Firebase Firestore with event types such as entry, exit, name_update, room_empty,

and checkpoint. These logs can later be visualized or exported. The system is also designed to reconstruct live room

-time video decoding, improving performance on low-spec machines.

Technology

Reviewed, Refereed, Multidisciplinary Online Journal

 13

Impact Factor: 7.67

Each camera feed is processed in a dedicated thread to maintain responsiveness. The FeedWorker class runs object

ecture is essential for handling

The system allows users to add new face images through a UI dialog. These are encoded and stored in Firestore with

tFace. Deletion of face records is also supported through a simple

update, room_empty,

and checkpoint. These logs can later be visualized or exported. The system is also designed to reconstruct live room

spec machines.

 International Journal of Advanced

 International Open-Access, Double

 Copyright to IJARSCT
 www.ijarsct.co.in

ISSN: 2581-9429

F. Mobile Application

Logs that were stored before and also the logs that are updated in real

userfriendly, and minimalistic mobile application as well as a web

and filter options for more efficient searching.

Figure 6. Mobile Application Log Viewer

VI. EXPERIMENTAL RES

The experimental evaluation involved testing the system under varied conditions such as lighting changes, facial

occlusions, and multiple simultaneous entries. The accuracy of face recognition was observed to be highest under well

lit conditions and dropped slightly with obstructions. The average FPS maintained during real

between 15–22 depending on resolution and camera load.

The system was tested on an AMD Ryzen 7 laptop with 16GB RAM and NVIDIA GTX 3050 mobile GPU.

Achieved an average frame rate of 20–35 FPS

Successfully tracked and re-identified individuals across frames and even after occlusion events.

I J A R S C T

International Journal of Advanced Research in Science, Communication and Technology

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, May 2025

 DOI: 10.48175/IJARSCT-26402

Logs that were stored before and also the logs that are updated in real-time can be viewed with the help of an

userfriendly, and minimalistic mobile application as well as a web-based application, provided with seamless search

and filter options for more efficient searching.

Figure 6. Mobile Application Log Viewer

VI. EXPERIMENTAL RESULTS

The experimental evaluation involved testing the system under varied conditions such as lighting changes, facial

sions, and multiple simultaneous entries. The accuracy of face recognition was observed to be highest under well

lit conditions and dropped slightly with obstructions. The average FPS maintained during real-

olution and camera load.

The system was tested on an AMD Ryzen 7 laptop with 16GB RAM and NVIDIA GTX 3050 mobile GPU.

35 FPS during live stream analysis with face recognition active.

ied individuals across frames and even after occlusion events.

Technology

Reviewed, Refereed, Multidisciplinary Online Journal

 14

Impact Factor: 7.67

time can be viewed with the help of an

with seamless search

The experimental evaluation involved testing the system under varied conditions such as lighting changes, facial

sions, and multiple simultaneous entries. The accuracy of face recognition was observed to be highest under well-

-time operation was

The system was tested on an AMD Ryzen 7 laptop with 16GB RAM and NVIDIA GTX 3050 mobile GPU.

during live stream analysis with face recognition active.

 International Journal of Advanced

 International Open-Access, Double

 Copyright to IJARSCT
 www.ijarsct.co.in

ISSN: 2581-9429

Re-check mechanism successfully updated 87% of unknown persons post

rate.

Firebase integration enabled real-time log synchronization across multiple devices and cameras.

Mobile app tested on Android 10+, providing seamless viewing and interaction with the logs.

Face recognition accuracy exceeded 90% on known individuals with varied angle

visual occlusion.

Figure 7. Face recognition accuracy under varying environmental conditions

Figure 8. Frame rate based on number of people present

I J A R S C T

International Journal of Advanced Research in Science, Communication and Technology

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, May 2025

 DOI: 10.48175/IJARSCT-26402

check mechanism successfully updated 87% of unknown persons post-recognition with less than 5% false match

time log synchronization across multiple devices and cameras.

Mobile app tested on Android 10+, providing seamless viewing and interaction with the logs.

Face recognition accuracy exceeded 90% on known individuals with varied angles and moderate lighting even under

Figure 7. Face recognition accuracy under varying environmental conditions

Figure 8. Frame rate based on number of people present

Technology

Reviewed, Refereed, Multidisciplinary Online Journal

 15

Impact Factor: 7.67

recognition with less than 5% false match

s and moderate lighting even under

Figure 7. Face recognition accuracy under varying environmental conditions

 International Journal of Advanced

 International Open-Access, Double

 Copyright to IJARSCT
 www.ijarsct.co.in

ISSN: 2581-9429

Figure 9. Ratio of Different log entries present

Figure 10. Performa

This project demonstrates a robust, scalable real

of deep learning with effective logging and user interaction features. Usi

for object tracking, and InsightFace for face recognition, the system effectively identifies and logs individuals in live

camera streams. A specific logging mechanism saves entry, exit, and activity data to Firebase

ISO timestamps to keep sort order and avoid duplication.

In addition, integration with a face re-checking mechanism greatly enhances recognition accuracy through periodic re

examination of unrecognized face embeddings, allowing

I J A R S C T

International Journal of Advanced Research in Science, Communication and Technology

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, May 2025

 DOI: 10.48175/IJARSCT-26402

Figure 9. Ratio of Different log entries present

Figure 10. Performance per cost graph denoting system-efficiency

VII. CONCLUSION

This project demonstrates a robust, scalable real-time face recognition and tracking system that combines the strength

of deep learning with effective logging and user interaction features. Using YOLOv8 for person detection, DeepSORT

for object tracking, and InsightFace for face recognition, the system effectively identifies and logs individuals in live

camera streams. A specific logging mechanism saves entry, exit, and activity data to Firebase Firestore with structured

ISO timestamps to keep sort order and avoid duplication.

checking mechanism greatly enhances recognition accuracy through periodic re

examination of unrecognized face embeddings, allowing post-hoc identification and log updates. The system is

Technology

Reviewed, Refereed, Multidisciplinary Online Journal

 16

Impact Factor: 7.67

time face recognition and tracking system that combines the strength

ng YOLOv8 for person detection, DeepSORT

for object tracking, and InsightFace for face recognition, the system effectively identifies and logs individuals in live

Firestore with structured

checking mechanism greatly enhances recognition accuracy through periodic re-

hoc identification and log updates. The system is

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26402 17

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

optimized for real-time execution on low and mid-range hardware via techniques such as frame skipping, batch

processing, and modular design. The mobile app improves accessibility and user control through viewing logs, temporal

or camera filtering, and marking unknown persons. This integration of backend smarts and user-accessible functionality

becomes a robust solution for security, attendance, and room space occupancy management.

In general, the project effectively proves a real-time, privacy-aware, and modular surveillance solution that can be

implemented in academic and professional settings with potential future additions like analytics, live video viewing,

and cross-platform mobile app development.

REFERENCES

[1]. Schroff, Florian, Dmitry Kalenichenko, and James Philbin. FaceNet: A Unified Embedding for Face

Recognition and Clustering. Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2015.

[2]. Redmon, Joseph, Santosh Divvala, Ross Girshick, and Ali Farhadi. You Only Look Once: Unified, Real-

Time Object Detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2016.

[3]. Wojke, Nicolai, Alex Bewley, and Dietrich Paulus. Simple Online and Realtime Tracking with a Deep

Association Metric. IEEE International Conference on Image Processing (ICIP), 2017.

[4]. Taigman, Yaniv, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. DeepFace: Closing the Gap to Human-

Level Performance in Face Verification. Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2014.

[5]. Ghimire, Aayush, Naser El Werghi, Salman Javed, and Jorge Dias. Real-Time Face Recognition System.

arXiv preprint arXiv:2204.08978, 2022.

[6]. Zhang, Kaipeng, Zhanpeng Zhang, Zhifeng Li, and Yu Qiao. Joint Face Detection and Alignment Using

Multi-task Cascaded Convolutional Networks. IEEE Signal Processing Letters, vol. 23, no. 10, 2016, pp.

1499–1503.

[7]. Howard, Andrew G., et al. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision

Applications. arXiv preprint arXiv:1704.04861, 2017.

[8]. OpenCV & Dlib Documentation. OpenCV.org, 2023, https://docs.opencv.org and

https://github.com/davisking/dlib.

[9]. Firebase Documentation. Firebase.google.com, 2023,

https://firebase.google.com/docs.

[10]. Goyal, Varun, Rajeev Sharma, and Rachit Wason. Face Detection and Tracking Using OpenCV. International

Journal of Computer Applications, vol. 179, no. 27, 2017

