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Abstract: Face recognition systems are increasingly used in biometric security for convenience and 

effectiveness. However, they remain vulnerable to spoofing attacks, where attackers use photos, videos, 

or masks to impersonate legitimate users. This research addresses these vulnerabilities by exploring the 

Vision Transformer (VIT) architecture, fine-tuned with the DINO framework utilizing Celeb A-Spoof, 

CASIA SURF, and a proprietary dataset. The DINO framework facilitates self-supervised learning, 

enabling the model to learn distinguishing features from un label data. We compared the performance of 

the proposed fine-tuned VIT model using the DINO framework against traditional models, including 

CNN Model Efficient Net b2, Efficient Net b2 (Noisy Student), and Mobile VIT on the face anti-spoofing 

task. Numerous tests on standard datasets show that the VIT model performs better than other models in 

terms of accuracy and resistance to different spoofing methods. Our model’s superior performance, 

particularly in APCER (1.6%), the most critical metric in this domain, underscores its improved ability 

to detect spoofing relative to other models. Additionally, we collected our own dataset from a biometric 

application to validate our findings further. This study highlights the superior performance of 

transformer-based architecture in identifying complex spoofing cues, leading to significant 

advancements in biometric security 
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I. INTRODUCTION 

A. Overview  

Face recognition systems (FRS) are vital to modern security, offering efficient biometric authentication for applications 

like smartphone unlocking and access control. These systems are particularly effective in sensitive areas, where they 

can restrict unauthorized access and enhance reliability  Smartphone-based FRS is also being explored, focusing on 

feature extraction algorithms and security challenges  However, they are vulnerable to spoofing attacks, where 

impostors use photos, videos, or masks to mimic legitimate users and deceive the system . Even simple identity 

spoofing methods, such as using mobile 

The associate editor coordinating the review of this manuscript and camera shots or social media photos, can 

compromise the security of these systems . This vulnerability requires developing strong anti-spoofing techniques to 

accurately differentiate between genuine and spoofed faces. . 

Several recent studies have demonstrated the potential of vision transformers in face anti-spoofing . Current research 

addresses this problem using the Vision Transformer (VIT) architecture, fine-tuned with the DINO (Emerging 

Properties in Self-Supervised Vision Transformers) framework. The DINO framework facilitates self-supervised 

learning, enabling the model to learn distinguishing features from un label data. However, existing self-supervised 

approaches often struggle with generalization across diverse and unseen spoofing techniques, and their limited. We 

hypothesize that a transformer-based model, trained on a large and diverse dataset, can effectively capture the nuanced 

features indicative of spoofing. As a result, it can outperform traditional CNN models. 

Face anti-spoofing poses unique challenges, especially due to the lack of label spoofing data and the constantly 

evolving techniques to bypass security systems. Self supervised learning, like DINO, provides a significant advantage 
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by allowing the model to learn from large amounts of un label data, reducing the need for expensive and time 

consuming label data. This is particularly valuable for face antispoofing, as collecting and label diverse spoofing 

samples poses a challenge. By using self-supervised learning, our model can better generalize across a wider range of 

spoofing attacks and adapt to unseen threats. 

In this study, we utilized multiple benchmark datasets to evaluate the performance of our proposed Vision Transformer 

(VIT) model, fine-tuned using the DINO framework. Besides these established datasets, we also gathered a unique 

dataset from a biometric application. The contributions of this study are as follows: 

 Introducing the Vision Transformer (ViT) architecture fine-tuned with the DINO (Emerging Properties in 

SelfSupervised Vision Transformers) framework for face anti-spoofing. While ViTs have been used in face 

antispoofing, integrating the DINO framework in this area has not been extensively investigated. 

 Comparative Analysis of the proposed model with traditional models, including CNN Model EfficientNet b2 

and EfficientNet b2 (Noisy Student), Mobile ViT. 

 Improvement in anti-spoofing performance, reflected in the APCER. Our comparative analysis shows that our 

DINO-based ViT model significantly outperforms other models, demonstrating the ability to identify spoofing 

attacks better. 

One of our model’s main distinctions is its integration with the DINO framework, which employs self-supervised 

learning. This allows our model to learn from unlabeled data and generalize better across various spoofing attacks. 

Although Vision Transformers have been previously applied to face anti-spoofing, the integration of the DINO 

framework remains underexplored in this context. Our work addresses this gap by introducing a novel approach and 

utilizing DINO’s self-supervised learning capabilities to enhance 

Model robustness against spoofing attacks .To our knowledge, this is the first application of the DINO framework in the 

context of face anti-spoofing. It fills a critical gap in the existing literature and offers new insights into the potential of 

self-supervised ViTs in biometric security. 

The paper is structured as follows: Section I is this introduction. Section II presents an overview of the works related to 

face anti-spoofing. Next, Section III describes the methods employed in this study, including data collection, vision 

transformers, and the DINO framework. Experimental results are presented in Section IV, followed by a Discussion in 

Section V and Future Works in Section VI. Finally, the concluding remarks are drawn in Section 

 

II. RELATED WORK 

This section reviews the existing methods for face antispoofing, including traditional and deep learning-based 

approaches. The vulnerability of face recognition systems to spoofing attacks has been extensively studied. 

Initial methods for face anti-spoofing mainly used handcrafted features and traditional machine learning techniques. For 

instance, some researchers  used SURF - speededup robust features as a patented local feature detector and descriptor, 

and Fisher vector encoding is an image feature encoding and quantization technique to enhance face spoof detection. 

Still, these methods struggled with generalizing to new and unseen spoofing attacks. Similarly, researchers focused on 

smartphone-based face unlock systems, emphasizing the limitations of these traditional methods in dynamic and varied 

attack scenarios . 

A range of other methods has been proposed for face antispoofing, including Haralick texture features , image quality 

assessment , patch and depth-based CNNs , and multi-feature video let aggregation . These methods have shown 

promising results in distinguishing between genuine and spoofed face appearances. Other approaches include general 

image quality assessment , color texture analysis  and pulse detection from face videos , all of which have demonstrated 

effectiveness in detecting various types of spoofing attacks. Combining FRS with other security systems, such as RFID, 

has also been suggested to strengthen security . 

Since the emergence of deep learning, Convolutional Neural Networks (CNNs) have become popular in face 

antispoofing research. Several studies have demonstrated the effectiveness of CNNs in learning features directly from 

data  leading to improved liveness detection performance. However, these models require large, diverse datasets and 

often struggle with generalization to novel spoofing techniques due to their reliance on local feature extraction. 
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Several recent studies have explored the use of transformer architectures in face anti-spoofing, with promising results. 

Studies  and  both achieved competitive performance using ViT transformers, with the latter introducing a relation 

aware mechanism. The performance was further improved by deepening the transformer network loop depth and 

introducing adaptive transformers for robust cross-domain face anti-spoofing, respectively . Other similar studies 

focused on generalizability, with the former proposing a domain-invariant vision transformer and the latter 

demonstrating the effectiveness of vision transformers for zero-shot face anti-spoofing . The other work presents UDG-

FAS, the first Unsupervised Domain Generalization framework for Face Anti-Spoofing . This framework uses large 

volumes of unlabeled data to learn generalizable features, thereby improving performance in low-data scenarios for face 

anti-spoofing. Another study introduces FM-ViT, a transformer-based framework that outperforms existing single-

modal frameworks . Adaptive vision transformers for robust few-shot cross domain face anti-Spoofing was proposed in 

the other recent study .The generalizability of vision transformers was further improved with the Domain-invariant 

Vision Transformer (DiVT) . Next, the study  developed a convolutional vision transformer-based framework for robust 

performance against unseen domain data. 

As we see, recent advancements in Vision Transformers (ViTs) offer a promising alternative. Unlike CNNs, ViTs 

capture global dependencies via self-attention mechanisms, potentially enhancing their ability to identify subtle, global 

spoofing cues. Studies  have explored the application of ViTs for unseen face anti-spoofing, showcasing their potential 

in handling unseen attacks. Further research emphasized the effectiveness of transformers in incorporating relation-

aware mechanisms for improved spoof detection. 

Recent studies illustrate the relevance of handling masked face detection in real-time scenarios, which can be extended 

to an anti-spoofing approach, enhancing the robustness of face detection systems. A CAFFE-modified MobileNetV2 

(CMNV2) model for masked face age and gender identification was proposed , achieving 96.54% accuracy by focusing 

on key facial areas like the eyes, forehead, and ears. Similarly, authors developed a Caffe-MobileNetV2 model for 

detecting masked and unmasked faces in both photos and real-time video , with an impressive accuracy of 99.64%. 

These studies highlight the importance of feature extraction from the periocular region and above, which aligns with 

challenges in facedetection and antispoofingunder occluded conditions. 

Specific challenges frequently arise in face anti-spoofing research, including difficulties in generalizing across different 

domains and datasets, the constraints imposed by limited data, and technical obstacles related to methodologies such as 

anomaly detection and black-box discriminators. Crossdomain face anti-spoofing, such as the domain gap and limited 

data, can lead to poor generalization of models to new domains. Furthermore, the generalization capabilities of 

classifiers, particularly when applied to diverse databases, are often questioned, as they may not consistently perform 

well across different datasets. 

 

DINO FRAMEWORK 

Recent research has explored the DINO framework for visual transformers, demonstrating its effectiveness in various 

computer vision tasks. DINO-based models have shown remarkable performance in object detection and segmentation . 

The framework has been extended to improve few-shot keypoint detection. The original DINO paper  highlighted the 

method’s ability to learn rich visual representations without labels, achieving state-of-the-art results on ImageNet. 

Many studies demonstrate the effectiveness of DINO in object detection and masked autoencoder domains.  focuses on 

learning patch-level representations, which are crucial for accurate object detection. DINO’s self-supervised vision 

transformers enable the model to learn detailed representations of image patches, improving performance in detecting 

and recognizing objects. Lastly,  and  both demonstrate how DINO’s features can be effectively utilized in masked 

autoencoders, enabling these models to reconstruct masked image regions more efficiently. These studies demonstrate 

DINO’s versatility and effectiveness across various computer vision applications. 

The DINO framework has been explored in the context of security, particularly in adversarial attack scenarios . For 

example, studies have analyzed the robustness of self-supervised Vision Transformers trained with DINO against 

adversarial attacks, showing that these models can be more resilient than those trained through supervised learning  

These works have focused on evaluating the robustness of DINO in adversarial contexts and exploring defense 

strategies to enhance model security. However, despite these advancements, no previous studies have applied DINO 
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specifically to face anti-spoofing. Our research addresses this gap by employing the DINO framework to enhance the 

performance of Vision Transformers in detecting spoofing attacks, thereby contributing a novel application of DINO

the domain of biometric security. By doing so, we demonstrate the potential of self

DINO to improve real-world security applications, particularly in face anti

So, unlike traditional supervised approaches that rely heavily on labeled datasets, DINO excels in tasks like face anti

spoofing by focusing on its ability to capture global dependencies and learn discriminative features from large amounts 

of unlabeled data. This leads to improved generalization to diverse spoofing attacks that may not be present in 

traditional training datasets. By leveraging the ViT architecture, DINO allows the model to detect subtle details 

indicative of spoofing, making it particularly

 

A. DATA 

In this research, we employed several benchmark datasets to assess how well our proposed Vision Transformer (ViT) 

model fine-tuned with the DINO framework. These datasets are selected for their diversi

spoofing techniques, ensuring a thorough evaluation of the model’s capabilities.

The CelebA-Spoof [41] dataset is an extensive dataset created especially for face anti

625,000 images of 10,000 subjects, incorporating

FIGURE 1. Trainig data distribution by dataset and label.

various spoofing attacks, including printed photos, replayed videos, and 3D masks. The dataset’s extensive range of 

spoofing techniques and high subject diversity make it an exc

models, ensuring they can generalize well to different types of attacks.

The CASIA-SURF [42], [43] dataset includes 21,000 images captured in multiple modalities: RGB, Depth, and 

Infrared. This multi-modal approach provides rich information that deep learning models can leverage to improve spoof 

detection accuracy. The dataset is particularly useful for evaluating the effectiveness of models in scenarios where 

different types of image data are available, improving the robustness of anti

In addition to these well-known public datasets, we used a proprietary dataset, which we collected from a biometrics 

application; it is owned and controlled by a company. This dataset was created duri

and non-suspicious. During biometric authentication, subjects were often asked to turn their heads or move closer, 

resulting in a dataset of 100,000 images. Each subject underwent multiple biometric sessions, providing div

under various conditions. These images are unlabeled. Due to privacy concerns and the sensitive nature of the biometric 

data, this dataset cannot be publicly disclosed. We aim to train a Vision Transformer (ViT) on this unlabeled data using 

a self-supervised learning approach. 

So, the dataset used in this study consists of images from three sources: CelebA

CASIA-SURF. The training data distribution, as depicted in the first set of plots (see Fig 1), shows that t

the data comes from the CelebA-Spoof dataset with 543,424 images, followed by the proprietary dataset with 69,234 

images, and CASIA-SURF with 14,879 images (Table 1). For the validation data, the distribution is similar, with 

59,762 images from CelebA-Spoof, 29,856 images from the proprietary dataset, and 6,892 images from CASIASURF. 

(see Fig 2) These distributions highlight the reliance on the CelebA

supplemented by the proprietary and CASIA
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various spoofing attacks, including printed photos, replayed videos, and 3D masks. The dataset’s extensive range of 

spoofing techniques and high subject diversity make it an excellent resource for training and evaluating anti

models, ensuring they can generalize well to different types of attacks. 

SURF [42], [43] dataset includes 21,000 images captured in multiple modalities: RGB, Depth, and 

modal approach provides rich information that deep learning models can leverage to improve spoof 

detection accuracy. The dataset is particularly useful for evaluating the effectiveness of models in scenarios where 

ble, improving the robustness of anti-spoofing systems. 

known public datasets, we used a proprietary dataset, which we collected from a biometrics 

application; it is owned and controlled by a company. This dataset was created during sessions flagged as suspicious 

suspicious. During biometric authentication, subjects were often asked to turn their heads or move closer, 

resulting in a dataset of 100,000 images. Each subject underwent multiple biometric sessions, providing div

under various conditions. These images are unlabeled. Due to privacy concerns and the sensitive nature of the biometric 

data, this dataset cannot be publicly disclosed. We aim to train a Vision Transformer (ViT) on this unlabeled data using 

So, the dataset used in this study consists of images from three sources: CelebA-Spoof, a proprietary dataset, and 

SURF. The training data distribution, as depicted in the first set of plots (see Fig 1), shows that t

Spoof dataset with 543,424 images, followed by the proprietary dataset with 69,234 

SURF with 14,879 images (Table 1). For the validation data, the distribution is similar, with 

Spoof, 29,856 images from the proprietary dataset, and 6,892 images from CASIASURF. 

(see Fig 2) These distributions highlight the reliance on the CelebA-Spoof dataset for training and validation, 

supplemented by the proprietary and CASIA-SURF datasets to provide diverse images for evaluating the model’s 
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performance across different sources. This diverse dataset composition ensures the robustness and generalizability of 

the face anti-spoofing models developed in this study.

 

FIGURE 2. Validation da

TABLE 1. Distribution of data in train and validation sets.

     

 

TABLE 2. Distribution of labels in train and validation sets.

      

      

The label distribution (Table 2) also indicates a balanced representation

validation sets, which is essential for accurate model training and evaluation.

Fig. 3 shows a sample of images from the dataset used in this study. The dataset includes a wide range of face images, 

both genuine and spoofed, to train and evaluate the face antispoofing models. The images in the sample illustrate 

various spoofing techniques, such as printed photos (images 5

images. Each image is labeled as ‘‘live’’ or ‘‘spoof,’’ highlighting the ground truth for training and validation purposes.

 

B. VISION TRANSFORMER (VIT) 

Vision Transformers significantly impacted the field of computer vision [44]. ViT architecture treats an image as a 

sequence of patches, similar to how words are treated in text processing using Transformers [45]. Each image is split 

into a grid of non-overlapping patches, then linearly embedded and provided with positional embeddings. These 

embeddings go through a standard Transformer enco

understand the connections between different patches (see Fig. 4).

The self-attention mechanism in Transformers can be defined as:

QKT 

 Attention(Q,K,V) = soft max √  

 V (1) dk 

where Q (queries), K (keys), and V (values) are derived from the input embeddings, and dkis the dimension of the keys.
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FIGURE 2. Validation data distribution by dataset and label. 

ABLE 1. Distribution of data in train and validation sets. 

   

  
 

TABLE 2. Distribution of labels in train and validation sets. 

   

   

The label distribution (Table 2) also indicates a balanced representation of normal and attack labels in both training and 

validation sets, which is essential for accurate model training and evaluation. 

Fig. 3 shows a sample of images from the dataset used in this study. The dataset includes a wide range of face images, 

nuine and spoofed, to train and evaluate the face antispoofing models. The images in the sample illustrate 

various spoofing techniques, such as printed photos (images 5-7), screen displays (images 3, 9-10), and genuine face 

‘‘live’’ or ‘‘spoof,’’ highlighting the ground truth for training and validation purposes.

Vision Transformers significantly impacted the field of computer vision [44]. ViT architecture treats an image as a 

similar to how words are treated in text processing using Transformers [45]. Each image is split 

overlapping patches, then linearly embedded and provided with positional embeddings. These 

embeddings go through a standard Transformer encoder, which uses multi-head self-attention mechanisms to 

understand the connections between different patches (see Fig. 4). 

attention mechanism in Transformers can be defined as: 

eys), and V (values) are derived from the input embeddings, and dkis the dimension of the keys.
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FIGURE 3. Sample images from the dataset illustrating various genuine (‘‘live’’) and fake (‘‘fake’’) examples. The 

dataset includes various facial images, including spoofing techniques such as printed and screen images.

Mobile ViT [46] is an effective neural network architecture, merging the capabilities of Vision Transformers (ViTs) 

with Convolutional Neural Networks (CNNs). Mobile ViT’s hybrid design enables it to capture both global and local 

image features that are important for the face antispoofing do

 

C. DINO (DISTILLATION WITH NO LABELS)

DINO is a self-supervised learning approach that trains the model to generate similar embeddings for different views of 

the same image [35]. This is done using a student

output of the teacher network. Architecture is shown in

• Teacher Network: A fixed pre-trained network that provides stable target representations.

• Student Network: A trainable network that learns to predict the teac

The DINO framework helps the ViT model learn discriminative features from large amounts of unlabeled data. This is 

particularly useful for tasks like face antispoofing, where labeled data may be limited. It will help the model train 

our data without labels. 

 

D. EFFICIENTNET B2 

EfficientNet b2 is a CNN model optimized for both efficiency and performance [47]. It uses a compound scaling 

method that proportionally increases the network’s width, depth, and resolution, resulting

fewer parameters and reduced computational cost. To enhance its performance further, we employed the noisy student 

[48] training approach, which iteratively trains the model on our custom unlabeled dataset, leveraging self traini

noise to improve robustness and accuracy. For training, we utilized the CelebA

Additionally, our proprietary dataset, consisting of 100,000 images, was incorporated into the training process using the 

noisy student approach, enhancing the model’s ability to generalize across different spoofing scenarios.
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FIGURE 3. Sample images from the dataset illustrating various genuine (‘‘live’’) and fake (‘‘fake’’) examples. The 

dataset includes various facial images, including spoofing techniques such as printed and screen images.

al network architecture, merging the capabilities of Vision Transformers (ViTs) 

with Convolutional Neural Networks (CNNs). Mobile ViT’s hybrid design enables it to capture both global and local 

image features that are important for the face antispoofing domain. 

DINO (DISTILLATION WITH NO LABELS) 

supervised learning approach that trains the model to generate similar embeddings for different views of 

the same image [35]. This is done using a student-teacher training setup, where the student network learns to imitate the 

output of the teacher network. Architecture is shown in Fig. 5. 

trained network that provides stable target representations. 

• Student Network: A trainable network that learns to predict the teacher’s representations. 

The DINO framework helps the ViT model learn discriminative features from large amounts of unlabeled data. This is 

particularly useful for tasks like face antispoofing, where labeled data may be limited. It will help the model train 

EfficientNet b2 is a CNN model optimized for both efficiency and performance [47]. It uses a compound scaling 

method that proportionally increases the network’s width, depth, and resolution, resulting in improved accuracy with 

fewer parameters and reduced computational cost. To enhance its performance further, we employed the noisy student 

[48] training approach, which iteratively trains the model on our custom unlabeled dataset, leveraging self traini

noise to improve robustness and accuracy. For training, we utilized the CelebA-Spoof and CASIA

Additionally, our proprietary dataset, consisting of 100,000 images, was incorporated into the training process using the 

proach, enhancing the model’s ability to generalize across different spoofing scenarios.
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The DINO framework helps the ViT model learn discriminative features from large amounts of unlabeled data. This is 

particularly useful for tasks like face antispoofing, where labeled data may be limited. It will help the model train on 

EfficientNet b2 is a CNN model optimized for both efficiency and performance [47]. It uses a compound scaling 

in improved accuracy with 

fewer parameters and reduced computational cost. To enhance its performance further, we employed the noisy student 

[48] training approach, which iteratively trains the model on our custom unlabeled dataset, leveraging self training with 

Spoof and CASIA-SURF datasets. 

Additionally, our proprietary dataset, consisting of 100,000 images, was incorporated into the training process using the 

proach, enhancing the model’s ability to generalize across different spoofing scenarios. 
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E. PROPOSED APPROACH 

1) EXPERIMENTAL SETTINGS 

To tackle the issue of face anti-spoofing, we fine

Our approach leverages ViTs’ ability to capture global dependencies in the input data via self

which enhances their ability to detect subtle, global spoofing cues. Though Vision Transformers have been applied to 

face anti-spoofing in prior research, incorporating the DINO framework within this context has received limited 

attention. We compared how well the ViT model performed against traditional models, including CNN Model Efficien 

tNet b2, Efficient Net b2 (Noisy Student), and Mobile 

field. Our models were trained on two NVIDIA A100 40 GB GPUs.

The detailed training procedure is outlined in Algorithm 1.

We selected the Adam optimizer [49] due to its ability to adapt the le

it is effective because, in deep learning problems, the loss function landscape can be extremely non

particularly suitable for deep models such as Vision Transformers.

Focal Loss [50] was used to handle the issue of class imbalance, a frequent challenge in face anti

reduces the impact of easy-to-classify examples, enabling the model to concentrate more effectively on complex cases, 

such as identifying spoofed faces. 

Using fp16 half precision enables faster training and reduces memory usage, especially when dealing with large models 

or datasets. This approach also allows for larger batch sizes, speeding up the training process on GPUs with limited 

memory. It helps us to speed up the training process and handle limitations on our GPUs.

The One Cycle LR scheduler [51] modifies the learning rate throughout the training process by initially setting it low, 

gradually increasing it to a peak, and then reducing it. his helps the model 

enabling it to explore a range of learning rates during training. It showed better convergence compared to other we use 

daugmentations such as Channel  Shuffle, schedulers. 

 

2) DISTINGUISHED FEATURES 

 During the training process, various data augmentation techniques were used to enhance the robustness and 

generalizability Of the face anti-Spoofing models. The Visulazation 

FIGURE 4. The input face image is split into patches, which are then projected line

information. These embeddings go into the Transformer encoder, which processes the sequence of patches. Next, the 

encoder’s output is passed through a multilayer perceptron (MLP) head to classify the image as either ‘‘spoo

‘‘live.’’ . 
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ining process, various data augmentation techniques were used to enhance the robustness and 

Spoofing models. The Visulazation  

FIGURE 4. The input face image is split into patches, which are then projected linearly and embedded with positional 

information. These embeddings go into the Transformer encoder, which processes the sequence of patches. Next, the 

encoder’s output is passed through a multilayer perceptron (MLP) head to classify the image as either ‘‘spoo
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FIGURE 5. This figure illustrates the DINO (Distillation with No Labels) model training process. It starts with image 

augmentations (1), where two augmented views of the same image are generated. The student model processes one 

view, while the teacher model processes the other (2). The teacher model’s outputs are centered and passed through a 

softmax layer (3). The student’s outputs are optimized using Stochastic Gradient Descent (SGD) to match the teacher’s 

outputs via an exponential moving average (EMA) update(4), minimizing the cross

and teacher’s redictions. 

of augmentations can be seen in Fig. 6. These augmentations were categorized into four main groups:

1) Color Transformations. To provide color 

used augmentations such as Image  Compression and a combination of blurring techniques such as Blur with a 

blur limit of 3 to 7, Motion Blur with a blur limit of 7 to 21, and Gauss  Noise

2) Affine Transformations .We used augmentations Such as Rotate And Flip to Provide Geometric Variations 

and Enhance the Model ability to generative across different orientation and perspective

3) Quality Degradations. To simulate various image visualization quality issues that might be encountered in 

real-world LR with One Cycle LR scheduler; end end return Trained model M

4) Cropping and Padding. To alter the spatial composition of the images, we used Crop And  Pad with a 

percentage range of   -10% to +23% which randomly crops and pads the images, ensuring the model can 

handle partial occlusions and varying framing conditio

The steps of the training Algorithm are as follows:

1) Data Preparation.Split images into patches and create patch embeddings with positional encodings.

Algorithm 1 Training DINOv2 for Liveness and

AntiSpoofing Classification 

 Input: Dataset D (CelebA-Spoof, CASIA-SURF,

Proprietary), Image Size 224 × 224, Patch Size

14 × 14 

Initialization: DINOv2 model M with pre-trained weights, with Batch Size B = 4, Learning Rate LR

0.001; 

Output: ViT model DINOv2 for epoch = 1 to 300 do

for each batch B in D do Resize images in B to 224 × 224; Apply augmentations to images;

Forward pass through M with half-precision

2) Self-Supervised Pre-training. Use the DINO framework to pre

facial images. 

3) Fine-tuning. Replace the decoder with a binary classification layer and fine

spoofing datasets. 

4) Evaluation. Compare the performance of the ViT model with EfficientNet b2 using standard metrics.

See Fig. 7 and Algorithm 1 for the detailed training algorithm steps. The algorithm initializes the DINOv2 model with 

pre-trained weights and a batch size of 4, using 224×224 image inputs with a 14 × 14 patch size. Over 300 epochs, 

images are augmented, passed through the 

with a OneCycleLR learning rate scheduler.
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augmentations (1), where two augmented views of the same image are generated. The student model processes one 

hile the teacher model processes the other (2). The teacher model’s outputs are centered and passed through a 

softmax layer (3). The student’s outputs are optimized using Stochastic Gradient Descent (SGD) to match the teacher’s 

oving average (EMA) update(4), minimizing the cross-entropy loss between the student’s 

of augmentations can be seen in Fig. 6. These augmentations were categorized into four main groups:

Color Transformations. To provide color variations and simulate different lighting conditions, scenarios, we 

used augmentations such as Image  Compression and a combination of blurring techniques such as Blur with a 

blur limit of 3 to 7, Motion Blur with a blur limit of 7 to 21, and Gauss  Noise for variability in noise levels.

Affine Transformations .We used augmentations Such as Rotate And Flip to Provide Geometric Variations 

and Enhance the Model ability to generative across different orientation and perspective 

o simulate various image visualization quality issues that might be encountered in 

LR with One Cycle LR scheduler; end end return Trained model M 

Cropping and Padding. To alter the spatial composition of the images, we used Crop And  Pad with a 

10% to +23% which randomly crops and pads the images, ensuring the model can 

handle partial occlusions and varying framing conditions. 

The steps of the training Algorithm are as follows: 

1) Data Preparation.Split images into patches and create patch embeddings with positional encodings.

Algorithm 1 Training DINOv2 for Liveness and 

SURF, 

Proprietary), Image Size 224 × 224, Patch Size 

trained weights, with Batch Size B = 4, Learning Rate LR

Output: ViT model DINOv2 for epoch = 1 to 300 do 

in D do Resize images in B to 224 × 224; Apply augmentations to images; 

precision (fp16); 

training. Use the DINO framework to pre-train the ViT model on a large dataset of unlabeled 

tuning. Replace the decoder with a binary classification layer and fine-tune the model on labeled face anti

4) Evaluation. Compare the performance of the ViT model with EfficientNet b2 using standard metrics.

gorithm 1 for the detailed training algorithm steps. The algorithm initializes the DINOv2 model with 

trained weights and a batch size of 4, using 224×224 image inputs with a 14 × 14 patch size. Over 300 epochs, 

images are augmented, passed through the model in halfprecision, and trained using FocalLoss and the Adam optimizer 

with a OneCycleLR learning rate scheduler. 
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1) Data Preparation.Split images into patches and create patch embeddings with positional encodings. 

trained weights, with Batch Size B = 4, Learning Rate LR 

train the ViT model on a large dataset of unlabeled 

tune the model on labeled face anti-

4) Evaluation. Compare the performance of the ViT model with EfficientNet b2 using standard metrics. 

gorithm 1 for the detailed training algorithm steps. The algorithm initializes the DINOv2 model with 

trained weights and a batch size of 4, using 224×224 image inputs with a 14 × 14 patch size. Over 300 epochs, 

model in halfprecision, and trained using FocalLoss and the Adam optimizer 
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IV. EXPERIMENTAL RESULTS

To evaluate the performance of the models, we used standard metrics in face anti

ACER [52], and accuracy. We express APCER and BPCER in terms of true positives (TP), false positives (FP), true 

negatives (TN), and false negatives (FN) 

APCER (Attack Presentation Classification Error Rate): This is the rate of attack presentations (spoof attempts) 

incorrectly classified as bona fide (genuine) presentations.

 APCER = FP/FP + TN  

BPCER (Bona Fide Presentation Classification

classified as attack presentations. 

 BPCER = FN/FN + TP    

ACER (Average Classification Error Rate): This is the mean of APCER and BPCER, providing a single metric to 

evaluate the model’s overall performance. 

 ACER = APCER + BPCER/2  (4)

In face anti-spoofing systems, APCER and BPCER present a trade

acceptance of spoofs) can increase BPCER (false rejection of genuine attempts) and vice vers

crucial for effective performance. 

For our comparison experiment, we used four models: EfficientNet b2 and the same model, but enhanced with the 

Noisy Student technique, MobileViT v2, and ViT (DINO). EfficientNet b2 was selected

performance and efficiency. The Noisy Student version of EfficientNet b2 was included to explore the impact of 

semisupervised learning on model robustness. MobileViT v2 was chosen for its balance of efficiency and performance. 

Finally, ViT (DINO) was included as the primary model in our research, focusing on its ability to leverage self

supervised learning through a transformer-based architecture.

The performance metrics for considered models are summarized in Table 3. The results d

(DINO) model significantly outperforms the other models performance on different datasets.

TABLE 3. Comparison of EfficientNet and ViT (DINO) Models (all datasets combined). across all evaluation metrics. 

Table 4 compares the model’s  

The results, summarized in Tables 3, 4, demonstrate that the ViT (DINO) model consistently outperforms the other 

models across all evaluation metrics. For instance, ViT (DINO) achieves the lowest APCER (1.6%) compared to 22.5% 

for EfficientNet b2 and 5.5% for MobileViT v2. Similarly, BPCER for ViT (DINO) is minimal at 0.1%, outperforming 

the other models. The ACER metric further confirms ViT (DINO)’s superior balance in handling both attack and bona 

fide presentations, with a score of 0.8% compared to 11

Moreover, ViT (DINO) consistently delivers the highest overall accuracy, reaching 99.8%, underscoring

capability in distinguishing genuine faces from spoofed ones across various datasets.

The enhancement in anti-spoofing efficacy is evident in the APCER metric. Our comparative analysis reveals that our

DINO-based ViT model greatly surpasses t

of 1.6%, markedly lower than the 22.5% by the EfficientNet model. This substantial improvement underscores our 

model’s enhanced capability to detect spoofing attacks.
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To evaluate the performance of the models, we used standard metrics in face anti-spoofing, including APCER, BPCER, 
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APCER (Attack Presentation Classification Error Rate): This is the rate of attack presentations (spoof attempts) 

incorrectly classified as bona fide (genuine) presentations. 

 (2) 
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 (3) 

ACER (Average Classification Error Rate): This is the mean of APCER and BPCER, providing a single metric to 

 

(4) 

spoofing systems, APCER and BPCER present a trade-off Fig. 8. Minimizing APCER (reducing false 

acceptance of spoofs) can increase BPCER (false rejection of genuine attempts) and vice versa. Balancing these rates is 

For our comparison experiment, we used four models: EfficientNet b2 and the same model, but enhanced with the 

Noisy Student technique, MobileViT v2, and ViT (DINO). EfficientNet b2 was selected for its strong baseline 

performance and efficiency. The Noisy Student version of EfficientNet b2 was included to explore the impact of 

semisupervised learning on model robustness. MobileViT v2 was chosen for its balance of efficiency and performance. 

lly, ViT (DINO) was included as the primary model in our research, focusing on its ability to leverage self

based architecture. 

The performance metrics for considered models are summarized in Table 3. The results demonstrate that the ViT 

(DINO) model significantly outperforms the other models performance on different datasets. 

TABLE 3. Comparison of EfficientNet and ViT (DINO) Models (all datasets combined). across all evaluation metrics. 

The results, summarized in Tables 3, 4, demonstrate that the ViT (DINO) model consistently outperforms the other 

models across all evaluation metrics. For instance, ViT (DINO) achieves the lowest APCER (1.6%) compared to 22.5% 

5% for MobileViT v2. Similarly, BPCER for ViT (DINO) is minimal at 0.1%, outperforming 

the other models. The ACER metric further confirms ViT (DINO)’s superior balance in handling both attack and bona 

fide presentations, with a score of 0.8% compared to 11.75% for EfficientNet b2 and 2.98% for MobileViT v2. 

Moreover, ViT (DINO) consistently delivers the highest overall accuracy, reaching 99.8%, underscoring

capability in distinguishing genuine faces from spoofed ones across various datasets. 

spoofing efficacy is evident in the APCER metric. Our comparative analysis reveals that our

based ViT model greatly surpasses the EfficientNet B2 model in performance. Notably, it achieves an APCER 

of 1.6%, markedly lower than the 22.5% by the EfficientNet model. This substantial improvement underscores our 

model’s enhanced capability to detect spoofing attacks. 
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Our model’s strong performance in APCER demonstrates its superior ability to detect spoofing over other models, as it 

is the most critical metric, even if others perform slightly better. APCER and BPCER are more crucial than overall 

accuracy in face anti-spoofing because th

shows how often the system mistakenly accepts spoof attacks as genuine, which is critical since even a few errors can 

lead to serious security breaches. BPCER, on the other hand, indicat

access, which can cause significant frustration. Since datasets in this field are often imbalanced, accuracy alone can be 

misleading–it might appear high even if the model fails to detect spoofing effectively. 

ISO/IEC 30107-3 focus on APCER and BPCER, as these metrics more accurately reflect the system’s performance in 

real-world security scenarios. 

Fig. 10 illustrates the trends for APCER, BPCER, ACER, and accuracy over 50 training ep

demonstrates a significant decrease in APCER for all models, with the ViT (DINO) model consistently maintaining a 

lower APCER throughout the training process. The BPCER plot highlights the reduction in BPCER, where the ViT 

(DINO) model shows superior performance by achieving a lower BPCER than other models. The ACER plot indicates 

the overall classification error rates, significantly improving the ViT (DINO) model’s ability to balance APCER and 

BPCER. The accuracy plot illustrates the higher overall accuracy of the ViT (DINO) model, indicating better general 

performance in distinguishing genuine and spoofed faces.

Fig. 9 presents the confusion matrices for all models. The ViT (DINO) model demonstrates superior classification 

performance with the lowest APCER and BPCER values, resulting in fewer false positives and false negatives. The 

confusion matrix for ViT (DINO) highlights its ability to accurately distinguish between genuine and spoofed faces, 

leading to high accuracy. MobileViT also shows strong performance with low error rates, while both EfficientNet b2 

models, though achieving high accuracy, exhibit higher APCER and BPCER, reflecting a relatively higher rate of 

misclassification when compared to MobileViT and ViT (DINO).

 

A. WHY APCER IS SIGNIFICANTLY DECREASED?

As our experimental observations demonstrated, APCER significantly decreased after we trained the ViT model, with 

even greater improvements when fine-tuned using the DINO framework. The decrease in
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performance in APCER demonstrates its superior ability to detect spoofing over other models, as it 

is the most critical metric, even if others perform slightly better. APCER and BPCER are more crucial than overall 

spoofing because they directly measure how well a system handles security threats. APCER 

shows how often the system mistakenly accepts spoof attacks as genuine, which is critical since even a few errors can 

lead to serious security breaches. BPCER, on the other hand, indicates how often genuine users are wrongly denied 

access, which can cause significant frustration. Since datasets in this field are often imbalanced, accuracy alone can be 

it might appear high even if the model fails to detect spoofing effectively. This is why standards like 

3 focus on APCER and BPCER, as these metrics more accurately reflect the system’s performance in 

Fig. 10 illustrates the trends for APCER, BPCER, ACER, and accuracy over 50 training epochs for all models. The plot 

demonstrates a significant decrease in APCER for all models, with the ViT (DINO) model consistently maintaining a 

lower APCER throughout the training process. The BPCER plot highlights the reduction in BPCER, where the ViT 

NO) model shows superior performance by achieving a lower BPCER than other models. The ACER plot indicates 

the overall classification error rates, significantly improving the ViT (DINO) model’s ability to balance APCER and 

tes the higher overall accuracy of the ViT (DINO) model, indicating better general 

performance in distinguishing genuine and spoofed faces. 

Fig. 9 presents the confusion matrices for all models. The ViT (DINO) model demonstrates superior classification 

formance with the lowest APCER and BPCER values, resulting in fewer false positives and false negatives. The 

confusion matrix for ViT (DINO) highlights its ability to accurately distinguish between genuine and spoofed faces, 

eViT also shows strong performance with low error rates, while both EfficientNet b2 

models, though achieving high accuracy, exhibit higher APCER and BPCER, reflecting a relatively higher rate of 

misclassification when compared to MobileViT and ViT (DINO). 

V. DISCUSSION 

A. WHY APCER IS SIGNIFICANTLY DECREASED? 

As our experimental observations demonstrated, APCER significantly decreased after we trained the ViT model, with 

tuned using the DINO framework. The decrease in APCER reflects the model’s 
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ability to more accurately distinguish between real and spoofed faces, reducing the risk of security breaches in face 

recognition systems. This improvement is critical because APCER directly measures the model’s effectiveness in 

identifying spoof attacks, a key concern in biometric security applications. 

The superior performance of ViT-based models can be attributed to their ability to capture global patterns and 

dependencies across the entire image, rather than focusing only on localized features, as is common with traditional 

CNN models. ViTs are particularly well-suited for face antispoofing tasks because they can detect subtle 

inconsistencies, such as unnatural lighting or distortions in spoofed faces. However, the DINO framework’s 

selfsupervised pre-training further enhances the model’s capability to learn discriminative features from large amounts 

of unlabeled data. By using this data, the DINO framework enables the ViT model to generalize better to diverse 

spoofing techniques that may not be present in traditional training datasets. This results in a model that is more robust 

against novel and complex spoofing attacks. 

The attention  visualizations  for spoofandliveclassimages, as shown in the figures Fig. 11, reveal how the Vision 

Transformer (ViT) model, fine-tuned with DINO, selectively focuses on different regions of the images when making 

classifications. In the case of spoof class images Fig. 11b, the attention maps demonstrate that the model concentrates 

on areas that often exhibit unnatural artifacts or inconsistencies, such as reflections, edges, or distortions typically found 

in spoofing attacks. In contrast, for the live class images Fig. 11a, the attention maps show a more evenly distributed 

focus on natural, coherent facial features, such as skin texture, smoothness, and uniform lighting patterns. This 

distinction between how the model handles real and spoofed images illustrates the model’s effectiveness in focusing on 

relevant features for classification. 

In contrast, the EfficientNet B2 model, although optimized for efficiency and performance, relies on local feature 

extraction through convolutional layers. This localized focus may limit its ability to generalize to novel and 

sophisticated spoofing attacks that require a detailed understanding of the face’s overall structure. Additionally, the 

traditional supervised learning approach used for training EfficientNet B2 may not fully exploit the potential of the 

available data, leading to suboptimal generalization. This limitation led us to experiment with training EfficientNet B2 

using the Noisy Student method, a semi-supervised approach that uses both labeled and unlabeled data. This approach 

improved performance metrics, including APCER, but the results were still not as good as the self-supervised ViT 

model fine-tuned with DINO. 

The findings of this study suggest that adopting transformer-based architectures, such as ViT, fine-tuned with self-

supervised learning frameworks like DINO, or even CNN-based models enhanced with semi-supervised learning 

frameworks like Noisy Student, can significantly improve face anti-spoofing systems. These advancements have 

practical implications for improving the security and reliability of biometric authentication systems, which are vision 

transformers by incorporating relation-aware transformers to zero-shot anti-spoofing and data mechanisms and 

adaptive-avg-pooling-based attention. augmentation, respectively, achieving Next, [29] and [55] extend the application 

of vision 

 

B. COMPARISON WITH RECENT STUDIES  

Let’s review how the current study’s results compare to previous studies. Many studies have explored using vision 

transformers in face anti-spoofing, with promising results.Many studies demonstrate the effectiveness of these models 

in detecting anomalies and achieving robust performance across different domains [11], [13], [28], [53]. Studies [27] 

and [54] further enhance the capabilities of state-of-the-art performance. Lastly, [56] reports significant improvements 

in accuracy and reduced equal error rates using transformer-based models. These studies collectively highlight the 

potential of vision transformers in enhancing the security of face recognition systems. Our findings back up these prior 

research works. 

  

VI. CONCLUSION 

In this study, we presented a novel application of the DINO framework within Vision Transformers for face 

antispoofing. This approach addresses the limited exploration of DINO’s self-supervised learning capabilities in this 

context. Several benchmark datasets were used to assess the effectiveness of the model. 
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The ViT (DINO) model consistently outperformed other models across all key metrics (especially in APCER), 

indicating its superior ability to distinguish between genuine and spoofed faces. Our comparative experiments 

demonstrated that the ViT (DINO) model consistently outperformed other state-of-the-art models, including 

EfficientNet B2, EfficientNet B2 with Noisy Student, and MobileViT, particularly in key metrics like APCER. This 

improvement is crucial as it addresses the growing threat of spoofing attacks in various applications, from personal 

device security to access control in high-security environments. The findings underscore the importance of adopting 

cutting-edge AI technologies to safeguard biometric systems against increasingly sophisticated spoofing techniques. 

In general, study findings suggest that incorporating DINO into ViTs enhances their robustness against spoofing 

attacks, offering valuable insights into the potential of selfsupervised learning in biometric security. The results indicate 

that integrating DINO into ViTs can enhance their performance in biometric security applications. This contributes to a 

broader understanding of how selfsupervised learning techniques can be effectively applied in this domain. 
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