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Abstract: Structural Health Monitoring (SHM) involves the continuous monitoring of a structure’s 

condition during operation using integrated sensor systems. SHM holds great promise for enhancing 

structural safety while simultaneously reducing deadweight and downtime. Various SHM methods have 

been developed to detect and evaluate different types of damage across a wide range of structures. 

Recently, the concept of Information Fusion combining data from multiple SHM methods has gained 

traction for improving damage assessment accuracy and reliability. 
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I. INTRODUCTION 

Modern industries, especially in transportation, face increasing demands to create lightweight, highly optimized 

structures. Reducing a vehicle's weight and downtime is crucial to improve efficiency while ensuring maximum 

structural reliability. However, uncertainties—such as actual loading conditions, material properties, environmental 

factors, and even misuse—often lead to over-designed structures and frequent safety inspections, resulting in 

operational downtime 

To address these challenges, **Structural Health Monitoring (SHM)** was introduced in the 1990s as an advancement 

of **Non-Destructive Testing (NDT)** [1]. SHM involves continuously monitoring a structure during its operation 

using integrated sensor systems  

This approach allows for real-time assessment of structural health. SHM capabilities are categorized into five levels [2]:   

Level 1: Damage detection   

Level 2: Damage localization   

Level 3: Damage quantification   

Level 4: Damage characterization   

Level 5: Structural integrity assessment   

Current SHM methods can achieve Levels 1 through 4 with relative ease. However, advancing from scheduled, 

inspection-based maintenance to a condition-based or predictive maintenance system requires the ability to assess 

structural integrity (Level 5). So far, Level 5 remains mostly conceptual, with few practical implementations [3,4]. 

This framework integrates the following key components:   

1. Application of SHM, along with load and usage monitoring, to detect and track flaws.   

2. Structural analysis to evaluate the effects of flaws on functionality and strength.   

3. Implementation of condition- and prediction-based maintenance strategies in compliance with safety and regulatory 

standards.   

This article Researchs SHM methods, focusing on their systematic combination and interdisciplinary advantages.   

 

1.1 SHM Methods and Their Classification 

Various physical principles are used in SHM to evaluate potential damage. SHM methods can be categorized as:   
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a. Active methods: The structure is intentionally stimulated, and its response is measured (e.g., guided wave techniques 

[5,6,7,8]).   

b. Passive methods: Signals generated by operational loads or damage events are monitored directly (e.g., Structural 

sound [9]) 

Additionally, SHM methods can be further divided into:   

a. Static methods: Evaluating steady-state conditions (e.g., neutral axis method [10] or electrical impedance tomography 

[11].   

b. Dynamic methods**: Monitoring changes over time (e.g., electromechanical impedance techniques [2].   

 

1.2. Challenges and the Need for Multi-Sensor Fusion 

No single SHM method can effectively detect all types of damage in every location of a structure [20]. Each method is 

better suited to specific damage types and structural properties. Thus, combining various SHM methods leads to more 

accurate and reliable evaluations [20]. Additionally, environmental factors can introduce uncertainties, requiring 

compensation or identification.   

To address these limitations, **multi-sensor Information Fusion** has gained significant attention. Multi-sensor fusion 

combines information from multiple sensors to enhance accuracy. It can involve:   

a. Homogeneous Information Fusion**: Using data from the same type of sensor and physical principle (e.g., guided 

wave triangulation with multiple transducers [19]).   

b. Heterogeneous Information Fusion**: Integrating data from different types of sensors and principles (e.g., combining 

neutral axis identification with temperature compensation using a Kalman filter [10]).   

 

II. INFORMATION FUSION OVERVIEW 

Information Fusion techniques integrate data from multiple sensors with information from an associated database, 

enabling more comprehensive conclusions about potential damage than a single sensor could provide. For example, 

fusing three guided wave Time-of-Flight (ToF) features can help localize damage more accurately [19]. These 

techniques also enhance the reliability and precision of damage assessments 

Information Fusion can be implemented at three distinct levels :   

1. Raw Information Fusion Level: At this level, multi-sensor data is directly processed or combined to derive 

sensitive features that aid in detecting, localizing, quantifying, or categorizing damage. This approach is 

suitable when sensors measure the same physical phenomenon, often using classic detection and estimation 

techniques such as the Kalman filter.   

2. Feature Information Fusion Level: Here, various representative damage indicators—extracted from multi-

sensor data and corresponding to different damage features—are compiled into a vector. This vector is 

analyzed using techniques such as neural networks, clustering algorithms, or template-based methods for 

pattern recognition.   

3. Decision-Level Fusion: This involves synthesizing evaluation results from different damage assessment 

methods to make informed decisions about the implications of the damage. Techniques such as weighted 

decision methods (e.g., voting), classical inference, Bayesian inference, or evidence theory (like the 

Dempster–Shafer method) are employed for this purpose.   

Damage is detected by observing its effects on specific structural properties. Selecting optimal SHM methods requires a 

deep understanding of the structural properties most affected by the targeted damage types. Achieving this necessitates 

a detailed analysis of the interaction between the structure and the damage.   

Table 1 presents an overview, based on insights from existing literature and the authors' expertise, detailing various 

types of damage observed in metal and composite structures and their qualitative impact on local mechanical properties. 

The metals examined include aluminum alloys, titanium alloys, and steels. The composite materials considered are 

primarily laminated carbon fiber-reinforced polymers (CFRPs) and glass fiber-reinforced polymers (GFRPs).   
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III. FUNDAMENTAL SHM

For the development of an effective multi-

essential to understand the capabilities of various standalone SHM methods. The capabilities are largely influenced by 

the governing equations of the methods and

only necessary to identify the most sensitive approach, but also one that is robust enough to handle uncertain 

environmental influences. Below, a brief overview of some of the most common SHM methods is provided, 

highlighting their capabilities and limitations.

 

3.1. Static Strain Measurements with Fiber Optical Sensors (FOS)  

The measurement of strain to assess a structure’s mechanical behavior has been used for decades [4]. Strain

techniques, owing to their local nature, have traditionally been employed for fatig

stress concentration on a structure. The most common sensor for such applications is the strain gauge. In recent years, 

however, the development of fiber optical sensors (FOS) has expanded the scope of strain measurement app

FOS technology offers significant advantages, including high sensitivity, immunity to electromagnetic interference, 

durability, multiplexing capabilities, and the potential for embedded sensing, making it a promising tool for continuous 

real-time monitoring of structures like aircraft [13].

Strain-based SHM approaches can be categorized into techniques operating in the frequency domain and the time 

domain. Static strain measurements fall under the time

counting algorithms for fatigue monitoring and other methods for measuring local strain in known hotspots For broader 

structural monitoring, the use of neural networks and machine learning algorithms is becoming increasingly popular to 

analyze the relationships between strain sensors located at different points [14]. A significant deviation between the 

strain predicted by a model and the measured strain can indicate potential damage. Thus, strain measurements are 

effective for assessing any damage that alters the local load path (strain state) of a structure under given loading 

conditions, such as cracks in composite or metal components, or residual strains following a damaging event, like 

impact or plastic deformation. 

However, certain types of damage are challenging to detect with static strain measurements. For example, delaminating 

caused by manufacturing defects may only affect the strain state under high loads, which causes the delaminating to 

buckle, making it difficult to detect under no

damage detection, localization, and size estimation, identifying the damage type (SHM Level 4) has not yet been 

reliably demonstrated. 
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III. FUNDAMENTAL SHM METHODS 

-sensor SHM approach for a specific structure and its potential damages, it

essential to understand the capabilities of various standalone SHM methods. The capabilities are largely influenced by 

the governing equations of the methods and the sensitivity of their physical parameters to damage. However, it is not 

to identify the most sensitive approach, but also one that is robust enough to handle uncertain 

environmental influences. Below, a brief overview of some of the most common SHM methods is provided, 

highlighting their capabilities and limitations. 

tic Strain Measurements with Fiber Optical Sensors (FOS)   

The measurement of strain to assess a structure’s mechanical behavior has been used for decades [4]. Strain

techniques, owing to their local nature, have traditionally been employed for fatigue monitoring in areas of known 

stress concentration on a structure. The most common sensor for such applications is the strain gauge. In recent years, 

however, the development of fiber optical sensors (FOS) has expanded the scope of strain measurement app

FOS technology offers significant advantages, including high sensitivity, immunity to electromagnetic interference, 

durability, multiplexing capabilities, and the potential for embedded sensing, making it a promising tool for continuous 

e monitoring of structures like aircraft [13]. 

based SHM approaches can be categorized into techniques operating in the frequency domain and the time 

domain. Static strain measurements fall under the time-domain category. Time-domain techniques incl

counting algorithms for fatigue monitoring and other methods for measuring local strain in known hotspots For broader 

structural monitoring, the use of neural networks and machine learning algorithms is becoming increasingly popular to 

e the relationships between strain sensors located at different points [14]. A significant deviation between the 

strain predicted by a model and the measured strain can indicate potential damage. Thus, strain measurements are 

mage that alters the local load path (strain state) of a structure under given loading 

conditions, such as cracks in composite or metal components, or residual strains following a damaging event, like 

f damage are challenging to detect with static strain measurements. For example, delaminating 

caused by manufacturing defects may only affect the strain state under high loads, which causes the delaminating to 

buckle, making it difficult to detect under normal loading conditions. While a sufficiently dense sensor array can enable 

damage detection, localization, and size estimation, identifying the damage type (SHM Level 4) has not yet been 
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To optimize strain-based SHM using a small se

axis location [36] or the zero-strain trajectory (ZST) are needed. The ZST method, developed by the authors' research 

group, uses strain measurements along designated zero

assessment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Vibration Analyses with Electro-Mechanical Impedance Method

The Electro-Mechanical Impedance (EMI) method is a vibration

monitoring (SHM). This approach utilizes one or more piezoelectric wafer active sensors (PWAS) attached to the 

mechanical structure of interest. The PWAS serves both to excite the structure and to measure its frequency response in 

the form of impedance, which is the ratio of applied voltage to measured current:

 

 

 

 

 

Here,U(\omega) is the amplitude of the applied harmonic voltage, and I(

for different angular frequencies (omega = 2pif). The impedance 

mechanical structure's condition because changes in impedance are indicative of changes in the structural properties, 

such as damage. 

 

 

 

 

 

In the one-dimensional case, neglecting the damping and dynamics of the 

measured impedance and the structure's dynamic response can be expressed as:

Where: 

m is the mass, 

c is the damping coefficient, 

k is the static stiffness of the structure. 
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based SHM using a small sensor array, sensitive damage assessment indicators, such as the neutral 

strain trajectory (ZST) are needed. The ZST method, developed by the authors' research 

group, uses strain measurements along designated zero-strain trajectories as damage-sensitive indicators for structural 

Mechanical Impedance Method 

Mechanical Impedance (EMI) method is a vibration-based technique widely used for structural 

monitoring (SHM). This approach utilizes one or more piezoelectric wafer active sensors (PWAS) attached to the 

mechanical structure of interest. The PWAS serves both to excite the structure and to measure its frequency response in 

nce, which is the ratio of applied voltage to measured current: 

omega) is the amplitude of the applied harmonic voltage, and I(\omega) is the resulting current at the PWAS 

for different angular frequencies (omega = 2pif). The impedance Z(omega) provides valuable insight into the 

mechanical structure's condition because changes in impedance are indicative of changes in the structural properties, 

dimensional case, neglecting the damping and dynamics of the PWAS, the relationship between the 

measured impedance and the structure's dynamic response can be expressed as: 
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The EMI method, along with other vibration-based SHM techniques, is sensitive to changes in structural properties 

such as stiffness, mass, damping, and geometry, making it applicable to a wide range of damage types in both metallic 

and composite structures. 

However, due to the numerous structural properties involved and their sensitivity to environmental influences, unique 

damage assessment can be challenging. Predicting structural vibration, especially for high-frequency vibrations 

required to detect small damages, is difficult, particularly with methods like Finite Element Analysis (FEA), which may 

not accurately capture high-frequency behavior. 

To mitigate these challenges, EMI-based SHM is generally implemented in two steps: 

1. Baseline Measurement: The impedance spectra of the pristine structure are measured over a wide frequency range. 

2. Continuous Monitoring: The impedance spectra are continuously monitored and compared with the baseline 

measurement throughout the structure's operational life. 

Any deviations in the impedance \( Z \) or admittance \( Y = \frac{1}{Z} \) characteristics are used as damage 

indicators. These deviations can indicate the presence of damage and also assist in self-diagnosis of the PWAS 

transducer, such as detecting changes in its capacity (\( \Delta C \)) or resonance frequencies, which are useful for 

monitoring PWAS-structure bonding integrity【20】. 

Damage Detection and Localization: 

For damage detection (SHM Level 1), basic statistical damage metrics are used to compare the impedance at the current 

state of the structure with that from the pristine state. These metrics typically focus on the real part of the impedance, 

such as the root-mean-square-deviation (RMSD)or mean-absolute-percentage-deviation (MAPD)【15】 

These metrics can also aid in **damage localization** (SHM Level 2). Since vibration attenuation increases with 

distance from the PWAS transducer, the damage location can be estimated based on the attenuation functions of the 

impedance measurements. This allows for triangulation techniques to pinpoint the damage. For instance, an 

experimental setup with movable artificial damages on an aluminum plate, as shown in Figure 6, correlates the MAPD 

with attenuation functions. Numerical simulations can help refine these estimates for better localization accuracy, 

enabling more reliable damage detection at a reduced number of measurements. 

 

3.3. Ultrasonic Guided Waves (UGW) 

Ultrasonic Guided Waves (UGW) have gained significant attention in the Structural Health Monitoring (SHM) research 

community in recent decades. Their ability to travel long distances with minimal energy loss, particularly in thin-walled 

structures, makes them an attractive option for damage detection in various materials, including metals and 

composites【18】. These waves interact strongly with structural changes, such as cracks or delimitation, and can be 

used for damage assessment due to their high sensitivity and cost-efficiency【18】. 

UGWs are elastic waves that are confined within a structure by its boundaries, and their classification depends on the 

type of deformation they induce in the material. The main types of UGWs used in SHM applications are: 

1. Shear Waves (SH and SV): These waves involve motion perpendicular to the direction of propagation and exist in 

horizontal (SH) and vertical (SV) forms. SH waves are particularly useful for applications like underwater inspection 

since they experience less attenuation in liquid media. 

2. Lamb Waves: These waves are confined between two parallel surfaces, such as the upper and lower surfaces of an 

infinite plate. For practical structural components, Lamb waves are generated when there is a large ratio of in-plane 

dimensions to thickness. They propagate as a superposition of symmetric and asymmetric modes, with the fundamental 

modes S0 (symmetric) and A0 (asymmetric) being most prominent at lower frequencies. 

3. Rayleigh Waves: These waves propagate along the free surface of structures, making them useful for detecting 

defects close to the surface. 

Lamb waves and SH waves, in particular, have the advantage of little energy loss over long distances, making them 

ideal for SHM in metallic and non-metallic structures. In SHM, the propagation speed and attenuation of UGWs depend 

on material properties (such as elasticity, density, and damping) and geometrical properties (such as wall thickness, 

phase transitions, micro cracks and surrface raggedness). These properties influence how the wave interacts with the 
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structure, allowing UGWs to be reflective of damage types like cracks or corrosion in metals, and delimitation in 

composites. 

While UGWs offer great potential for SHM, they also have limitations. Surface coatings can lead to high attenuation, 

and the method is sensitive to environmental factors like temperature and moisture. Additionally, surface dirt or 

changes in material properties can also interfere with wave propagation, which complicates data interpretation. The 

high demands on experimental equipment and the challenges posed by environmental noise and measurement errors 

make data analysis for UGW-based SHM applications complex. Analytical solutions are available only for specific 

cases, and simulations can be computationally expensive. 

 

3.3.1. Damage Detection and Localization with UGW 

Damage Detection (SHM Level 1): For basic damage detection, statistical damage metrics are used to compare signals 

from the pristine structure with those from the structure in its damaged state. When damage occurs, the new wave 

packets generated by the PWAS transducers will scatter differently, allowing for the detection of changes in the 

signal【17】. 

Damage Localization (SHM Level 2): Damage localization is typically achieved using triangulation, where the Time of 

Flight (ToF) of wave packets scattered by the damage is measured. The intersection of ellipses drawn around each 

actuator-sensor pair provides the most probable location of the damage. For example, in an experiment on damage 

location using three PWAS transducers on an aluminum plate with movable artificial damages, the ToF of wave packets 

is used to calculate the damage's location through statistical fusion of the damage indicators. This method provides a 

reliable way to determine the damage location with high accuracy. 

 
 

IV. MULTI MODAL SENSOR APPROACH TO SHM OF METAL AND COMPOSITE STRUCTURES 

A comprehensive and dependable SHM approach for damage assessment up to Level 4, suitable for both metal and 

composite structures, and addressing their various damage types, is difficult to achieve with a singlet SHM method. 

This challenge arises because each SHM method has different sensitivities to structural properties, as well as varying 

degrees of susceptibility to environmental influences (see Table 1, Table 2, and Table 3). A multi-sensor approach can 

significantly enhance the comprehensiveness, accuracy, and reliability of the damage assessment. To establish such a 

system, two steps are required: first, selecting the appropriate SHM methods and their corresponding sensor network; 

and second, defining an effective data evaluation process for accurate damage inspection. 

 

4.1. Selection of SHM Methods and Sensors   

The choice of SHM methods directly relates to the measurement entities required and the types of sensors needed. Key 

considerations for designing a sensor network include: 
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a. Optimal sensor placement: Proper locations for excitation and measurement are essential. 

b. Robustness: The reliability of the measurement signal and sensor equipment is crucial. 

c. Structural constraints: Factors such as volume, weight, and curved surfaces affect sensor placement. 

d. Environmental factors: Sensors must withstand conditions such as dirt, moisture, and high temperatures. 

e. Cost constraints: Budget limitations must also be considered when selecting sensors and measurement equipment. 

Designing the sensor network is a complex engineering task, which is outside the scope of this article. However, the 

qualitative analysis of SHM methods and their sensors is provided, based on their theoretical capabilities (e.g., ability to 

assess specific damages or achieve different SHM levels). For instance, complete damage identification is possible only 

through active dynamic techniques, such as the Ultrasonic Guided Wave (UGW) method. Dynamic SHM methods are 

highly sensitive to many structural properties and changes. However, they are also more prone to environmental 

influences. Additionally, higher-level damage features are challenging to back-calculate, especially with noisy data and 

unknown environmental conditions. To address this, it is crucial to incorporate measurement entities that are more 

closely aligned with specific structural changes. Static strain-based methods, such as the Zero-Strain Trajectory (ZST) 

method, can help in this regard. These methods are not influenced by mass or damping properties, and many types of 

damage can directly affect the measured surface strains (see Table 1). Fiber Optical Sensors (FOS) are particularly 

advantageous because of their high technological readiness and ability to measure strain along a defined curve or across 

large areas using a sensor grid. This allows for reliable conclusions on the location and size of damage. Furthermore, 

less reliable methods can complement the assessment or reduce the sensor grid density.  

Another method is Electrical Impedance Tomography (EIT), which leverages the electrical properties of conductive 

structures, such as Carbon Fiber Reinforced Polymers (CFRP). EIT can monitor the location and size of damage across 

the entire structure but is also sensitive to environmental influences. While it requires costly evaluation equipment and 

robust electrode attachment, when combined with other SHM methods, EIT-based damage assessment can provide 

valuable insights. 

A key advantage of a multi-sensor SHM approach is its ability to mitigate the impact of environmental influences. This 

can be achieved through additional sensors (e.g., for temperature or moisture), by back-calculating temperature from 

strain data under unloaded conditions, or by ensuring that the unloaded condition is maintained for dynamic 

evaluations. Moreover, self-diagnosis can be integrated into the system, allowing for the identification of faulty sensors. 

For instance, Electromagnetic Impedance (EMI) measurements can be used to diagnose Piezoelectric Wafer Active 

Sensors (PWAS) used in the UGW method. 

For detecting delaminating initiation in CFRP or GFRP components, combining the UGW and EMI methods could 

prove effective: 

a. UGW Method: For far-field sensing and SHM Level 4 assessment, leveraging both linear and nonlinear scattering 

effects. 

b. EMI method: For self-diagnosis and local SHM Level 3 assessment through linear and nonlinear effects. 

 

4.2. Definition of Data Interpretation Procedure   

The Data Interpretation process in a multi-sensor SHM approach must account for the strengths and weaknesses of each 

SHM method to combine the data most effectively. This requires statistical data on the reliability of each SHM method 

and its damage assessment features. To maintain accurate final damage assessments, a component knowledge database 

should be regularly updated throughout operation and integrated with a centralized database that contains data from 

similar components in operation. The data evaluation process, illustrated in Figure 12, consists of four main steps: 

1. Sensor Network: Collection of raw data from the various sensors in the network. 

2. Raw Information Fusion: Combining sensor data from multiple sources to create a more accurate damage 

assessment. 

3. Feature Extraction: Identifying key features from the combined data that are indicative of damage. 

4. Decision Making and Fusion: Evaluating the extracted features to make conclusions about the potential structural 

damage. If damage is detected, it might trigger manual inspection, and the knowledge database is updated with the new 

findings. 
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This comprehensive evaluation procedure helps integrate multiple SHM methods and sensors for more reliable and 

accurate damage assessment. 

The design of the sensor network for a multi

the selected SHM methods. This process must be adapted to the structure of interest, taking into account its geometrical 

and environmental constraints. Additionally, sensors for monitoring environmental conditions (such as temperature and 

moisture) may be necessary. A multi-sensor net

Optical Sensors (FOS), conductivity sensors, and temperature sensors, combined with SHM methods like the ZST 

approach, direct or thin-film-based Electrical Impedance Tomography (EIT), Electrom

Ultrasonic Guided Waves (UGW), can effectively assess key damage types in both metal and composite structures.

However, raw measurement data from these sensors must be associated and fused

based methods—to account for environmental factors like thermal state . For example, model

temperature and strain data can help compensate for temperature effects in the neutral axis damage assessment feature 

of composite beams.  

A range of damage indicators and features can be extracted for self

of damage assessment, as outlined in Section 3. These indicators are then evaluated using a knowledge database, which 

could contain values such as threshold data or UGW scattering patterns, and be based on either models or data. The 

results from various evaluations are combined at different SHM levels, using methods such as weighted decision

making. Careful weighting is essential and requires knowledg

well as statistical data on the reliability of each SHM result. While studies have addressed the statistical reliability of 

SHM methods, generalizing these findings remains challenging. However, s

reliability of conclusions, such as the probability that the predicted damage location is accurate (e.g., as shown in Figure 

6b) 

Damage assessment proceeds stepwise, starting with detecting potential damage. If da

continues with conclusions about localization, size, and type of damage. For instance, determining the size and type of 

damage using UGW scattering patterns requires prior knowledge of the damage location, i.e., understanding 

which direction the scattered wave is traveling (Figure 8b). However, this is not always a straightforward process. 

Lower-level conclusions can be revisited or corrected if higher

Finally, the structure’s overall health state is determined at SHM Level 5, which may prompt manual inspection and 

repair. In today’s aircraft design, even the mere existence of damage may require immediate repair according to 

regulatory standards. Looking ahead, stra

evaluation of current structural integrity or predict future damage, optimizing repair decisions based on regulation, 

safety standards, and condition- and prediction
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procedure helps integrate multiple SHM methods and sensors for more reliable and 

The design of the sensor network for a multi-sensor SHM approach is primarily influenced by the data requirements of 

s process must be adapted to the structure of interest, taking into account its geometrical 

and environmental constraints. Additionally, sensors for monitoring environmental conditions (such as temperature and 

sensor network utilizing Piezoelectric Wafer Active Sensors (PWAS), Fiber 

Optical Sensors (FOS), conductivity sensors, and temperature sensors, combined with SHM methods like the ZST 

based Electrical Impedance Tomography (EIT), Electromagnetic Impedance (EMI), and 

Ultrasonic Guided Waves (UGW), can effectively assess key damage types in both metal and composite structures.

However, raw measurement data from these sensors must be associated and fused—either through model

to account for environmental factors like thermal state . For example, model

temperature and strain data can help compensate for temperature effects in the neutral axis damage assessment feature 

mage indicators and features can be extracted for self-diagnosis of the sensors and for all four SHM levels 

of damage assessment, as outlined in Section 3. These indicators are then evaluated using a knowledge database, which 

hreshold data or UGW scattering patterns, and be based on either models or data. The 

results from various evaluations are combined at different SHM levels, using methods such as weighted decision

making. Careful weighting is essential and requires knowledge of the sensor network’s condition (via self

well as statistical data on the reliability of each SHM result. While studies have addressed the statistical reliability of 

SHM methods, generalizing these findings remains challenging. However, statistical data should ideally include the 

reliability of conclusions, such as the probability that the predicted damage location is accurate (e.g., as shown in Figure 

Damage assessment proceeds stepwise, starting with detecting potential damage. If damage is detected, the process 

continues with conclusions about localization, size, and type of damage. For instance, determining the size and type of 

damage using UGW scattering patterns requires prior knowledge of the damage location, i.e., understanding 

which direction the scattered wave is traveling (Figure 8b). However, this is not always a straightforward process. 

level conclusions can be revisited or corrected if higher-level assessments do not align with the initial findings. 

structure’s overall health state is determined at SHM Level 5, which may prompt manual inspection and 

repair. In today’s aircraft design, even the mere existence of damage may require immediate repair according to 

regulatory standards. Looking ahead, strategies involving a knowledge database or digital twin could enhance the 

evaluation of current structural integrity or predict future damage, optimizing repair decisions based on regulation, 

and prediction-based monitoring 
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V. CONCLUSION 

It relying solely on individual state-of-the-art SHM methods may not provide a comprehensive damage assessment for 

full-scale structural components. The combined use of dynamic SHM methods, such as PWAS-based techniques like 

EMI and UGW, offers significant potential for damage identification due to their sensitivity to various structural 

features. However, these methods are affected by structural and environmental uncertainties. In contrast, static SHM 

methods, like Fiber Optical Sensors (FOS), are technologically advanced and provide straightforward back-calculation 

of damage from damage indicators. As a result, uncertainties in static methods can be more easily identified or 

compensated for by additional sensor data. 

The fundamental physical effects used in static and dynamic SHM methods differ significantly, which can lead to more 

reliable damage assessment when combined. This redundancy improves the overall reliability of the system. Therefore, 

a reliable multi-sensor SHM approach should integrate both static and dynamic methods for damage assessment. The 

Information Fusion process for multi-sensor SHM needs to be tailored to meet the specific requirements of each 

method. While some SHM methods already incorporate Information Fusion in their feature extraction and damage 

evaluation, optimizing the fusion of data to achieve reliable damage assessments remains an ongoing area of research 

A clear, structured data evaluation procedure is proposed for effectively combining multiple SHM methods in a multi-

sensor approach, enhancing the reliability of the overall damage assessment. However, successful decision-level 

Information Fusion will require the development of generalized and verified statistical data, an area that warrants 

further research. Looking forward, future multi-sensor SHM systems should incorporate structural analysis data to 

expand damage assessments to a full structural integrity evaluation (SHM Level 5), offering a more complete and 

accurate picture of the structure’s health.   
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