
I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, May 2025

 Copyright to IJARSCT DOI: 10.48175/568 90

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

Code Generation using Transformer Models
Prof. J. R. Mahajan1 and Ms. Kedare Geetanjali2

Assistant Prof., Computer Engineering Department 1

Students, M.E., Computer Engineering Department2

Adsul’s Technical Campus. Chas, Ahilyanagar, India

Abstract: Code generation, the task of automatically producing source code from natural language

descriptions or partial code snippets, has seen significant advancements with the introduction of

Transformer-based models. Unlike traditional rule-based or statistical methods, Transformer models

leverage self-attention mechanisms and deep learning to better understand context, syntax, and

semantics, thereby generating more accurate and human-like code. This paper explores the evolution of

code generation, emphasizing the pivotal role of Transformer architectures such as GPT, Codex, and

CodeT5. We discuss how these models are trained on massive code corpora, enabling them to perform

tasks like code completion, translation between programming languages, and automatic bug fixing.

Moreover, we highlight their application across various domains, from software development to

educational tools, while analyzing the challenges including syntactic errors, logical inconsistencies, and

ethical concerns like code plagiarism. The study also sheds light on ongoing research aimed at

enhancing model efficiency, interpretability, and domain adaptability. Overall, Transformer models

represent a transformative approach to automating coding tasks, holding great promise for the future of

intelligent software engineering.

Keywords: Code Translation, Transformer Models, Natural Language Processing, Code Generation,

GPT Models, Code T5

I. INTRODUCTION

The automation of software development processes has been a longstanding goal within the field of Artificial

Intelligence (AI). One key area in this pursuit is code generation -the automatic production of programming code from

natural language instructions or incomplete code fragments. Transformer-based models, renowned for their success in

Natural Language Processing (NLP), have revolutionized this domain by providing sophisticated, context-aware

solutions. Their ability to model complex dependencies and generate coherent sequences makes them highly effective

for coding tasks.

 Traditional code generation methods, based on templates, grammar rules, or statistical models, often struggle with

flexibility, scalability, and semantic understanding. With the advent of Transformer models, these limitations are

significantly reduced. Models like Open AI’s Codex and Salesforce’s CodeT5 demonstrate how AI can now generate

functionally correct, readable, and even optimized code. This shift opens new possibilities for faster development

cycles, enhanced productivity, and democratized access to programming knowledge.

In recent years, code generation has emerged as a revolutionary field at the intersection of software engineering and

artificial intelligence (AI). Specifically, Transformer models—originally designed for natural language processing

(NLP) tasks—have demonstrated extraordinary capabilities in automatically generating high-quality code from natural

language descriptions, partial code snippets, or problem statements. These models, built on attention mechanisms, are

capable of understanding complex dependencies within sequences, making them ideal for tasks that require syntactic

and semantic precision like code generation.

 Transformer-based code generation operates by learning patterns, structures, and logic from massive corpora of

programming languages. Models such as OpenAI’s Codex (powering GitHub Copilot), CodeGen by Salesforce,

PolyCoder, and Google's AlphaCode have set new benchmarks in this domain. These models are often trained on

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, May 2025

 Copyright to IJARSCT DOI: 10.48175/568 91

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

datasets like The Pile, CodeSearchNet, and GitHub repositories, enabling them to generate coherent, functional code

across multiple languages, including Python, Java, C++, JavaScript, and more.

However, Transformer-based code generation is not without challenges. Issues such as hallucinated code (where the

model produces syntactically correct but logically incorrect code), security vulnerabilities, license compliance, and bias

toward frequently seen patterns pose serious concerns. As a result, significant research is being conducted to improve

model safety, interpretability, and controllability.

 In practical applications, Transformer models are being integrated into Integrated Development Environments (IDEs),

code review tools, and software testing platforms. They help developers by boosting productivity, reducing boilerplate

code, and even aiding non-programmers in creating simple applications via low-code/no-code platforms. In educational

contexts, they provide instant feedback to programming students and generate exercises tailored to learning goals.

In summary, code generation using Transformer models represents a significant technological advancement with

profound impacts on software development, education, and AI research. With ongoing innovations and ethical

considerations, it is poised to redefine how humans and machines collaborate in programming tasks.

II. LITERATURE SURVEY

For our project we are surveying some reports and references which are helping us to make it easy and simplest and

they are as follows

1. Enrique Dehaerne et al,“ Code Generation Using Machine Learning : A Systematic Review ”

In this they study generating code of programming language for automatic software development. This review provides

a broad and detailed over view of studies for code generation using Machine Learning. The most popular applications

that works in these paradigms is code generation from natural language descriptions, documentation generation, and

automatic program repair. The most frequently used Machine Learning model in these studies include Transformer and

Recurrent Neural Network and Conventional Neural Network. Other Neural Network architecture as well as non-neural

techniques were also observed.

2. Youngmi et al“ALSI-Transformer: Transformer-Based Code Comment Generation with Aligned Lexical and

Syntactic Information”

Code comments explain the operational process of a computer program and increase the long term productivity of

programming tasks such as debugging and maintenance. Therefore, developing methods that automatically generate

natural language comments from programming code is required. With the development of deep learning, various

excellent models in the natural language processing domain have been applied for comment generation tasks, and

recent studies have improved performance by simultaneously using the lexical information of the code token and the

syntactical information obtained from the syntax tree. In this paper, to improve the accuracy of automatic comment

generation, we introduce a novel syntactic sequence, Code-Aligned Type sequence (CAT), to align the order and length

of lexical and syntactic information, and we propose a new neural network model, Aligned Lexical and Syntactic

information-Transformer (ALSI-Transformer), based on a transformer that encodes the aligned multi-modal

information with convolution and embedding aggregation layers. Through in-depth experiments. They compared ALSI

Transformer with current baseline methods using standard machine translation metrics and demonstrate that the

proposed method achieves state-of-the-art performance in code comment generation.

3. Das N et al“A Comparative Study on Code Generation with Transformers”

In an era of widespread influence of Natural Language Processing (NLP), there have been multiple research efforts to

supplant traditional manual coding techniques with automated systems capable of generating solutions autonomously.

With rapid research for code generation and a sole focus on large language models, there emerges a need to compare

and evaluate the performance of transformer architectures based on several complexities of the model. This paper

introduces the concept of “A Comparative Study on Code Generation with Transformers,” a model based on

Transformer architecture and NLP methodologies to automatically generate C++ source code for different varieties of

problems. Here, a comparative study is performed to evaluate the robustness of transformer-based models on the basis

 International Journal of Advanced

 International Open-Access, Double

 Copyright to IJARSCT
 www.ijarsct.co.in

ISSN: 2581-9429

of their architecture complexities and their capability to handle diverse problem sets, from basic arithmetic to complex

computations.

4. Mark Chen,Jerry T et al“Evaluating Large Language Models Trained on Code”

In this paper they introduce Codex, a GPT language model fine

study its Python code-writing capabilities. A distinct production version of

Val, a new evaluation set we release to measure functional correctness for synthesizing programs from doc strings, our

model solves 28.8% of the problems, while GPT

repeated sampling from the model is a surprisingly effective strategy for producing working solutions to difficult

prompts.

5. Wang Y et al“Code T5: Identifier aware Unified Pre

Generation”

Pre-trained models for Natural Languages (NL) like BERT and GPT have been recently shown to transfer well to

Programming Languages (PL) and largely benefit a broad set of code

methods either rely on an encoder-only (or decoder

understanding) tasks or process the code snippet in the same way as NL, neglecting the special characteristics of PL

such as token types. We present CodeT5, a unified

leverages the code semantics conveyed from the developer

framework to seamlessly support both code understanding and generation tasks and allows f

The system architecture for code generation using Transformer models typically consists of the following stages:

A. Input Module:

• Accepts user inputs such as natural language pro

• Pre-processing like tokenization is performed here.

B. ENCODER (TRANSFORMER-BASED):

• Encodes the input prompt into a dense, context

• Captures syntactic and semantic information from the input.

I J A R S C T

International Journal of Advanced Research in Science, Communication and Technology

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, May 2025

 DOI: 10.48175/568

of their architecture complexities and their capability to handle diverse problem sets, from basic arithmetic to complex

,Jerry T et al“Evaluating Large Language Models Trained on Code”

In this paper they introduce Codex, a GPT language model fine-tuned on publicly available code from GitHub, and

writing capabilities. A distinct production version of Codex powers GitHub Copilot. On Humane

Val, a new evaluation set we release to measure functional correctness for synthesizing programs from doc strings, our

model solves 28.8% of the problems, while GPT-3 solves 0% and GPT-J solves 11.4%. Furthermore, the

repeated sampling from the model is a surprisingly effective strategy for producing working solutions to difficult

5. Wang Y et al“Code T5: Identifier aware Unified Pre-Trained Encoder-Decoder Models for code Understanding and

trained models for Natural Languages (NL) like BERT and GPT have been recently shown to transfer well to

Programming Languages (PL) and largely benefit a broad set of code-related tasks. Despite their success, most current

only (or decoder-only) pre-training that is suboptimal for generation (resp.

understanding) tasks or process the code snippet in the same way as NL, neglecting the special characteristics of PL

such as token types. We present CodeT5, a unified pre-trained encoder-decoder Trans- former model that better

leverages the code semantics conveyed from the developer-assigned identifiers. Our model employs a unified

framework to seamlessly support both code understanding and generation tasks and allows for multi

III. SYSTEM DESIGN

Fig. 1. System Architecture

The system architecture for code generation using Transformer models typically consists of the following stages:

• Accepts user inputs such as natural language prompts, incomplete code snippets, or function descriptions.

processing like tokenization is performed here.

BASED):

• Encodes the input prompt into a dense, context-rich representation.

information from the input.

Technology

Reviewed, Refereed, Multidisciplinary Online Journal

 92

Impact Factor: 7.67

of their architecture complexities and their capability to handle diverse problem sets, from basic arithmetic to complex

tuned on publicly available code from GitHub, and

Codex powers GitHub Copilot. On Humane

Val, a new evaluation set we release to measure functional correctness for synthesizing programs from doc strings, our

J solves 11.4%. Furthermore, they find that

repeated sampling from the model is a surprisingly effective strategy for producing working solutions to difficult

Decoder Models for code Understanding and

trained models for Natural Languages (NL) like BERT and GPT have been recently shown to transfer well to

related tasks. Despite their success, most current

training that is suboptimal for generation (resp.

understanding) tasks or process the code snippet in the same way as NL, neglecting the special characteristics of PL

former model that better

assigned identifiers. Our model employs a unified

or multi-task learning.

The system architecture for code generation using Transformer models typically consists of the following stages:

mpts, incomplete code snippets, or function descriptions.

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, May 2025

 Copyright to IJARSCT DOI: 10.48175/568 93

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

C. DECODER (TRANSFORMER-BASED):

• Generates code tokens sequentially based on the encoded input and previously generated tokens.

• Predicts the next most probable code element.

D. TRAINING PHASE (OFFLINE):

• The Transformer model is trained on large code corpora (e.g., GitHub, Stack Overflow datasets).

• Loss functions like Cross-Entropy or CodeBLEU are used for optimization.

E. INFERENCE/GENERATION PHASE (ONLINE):

• The trained model generates code snippets in real-time for new inputs.

• Post-processing ensures syntax correctness and format adjustments.

F. EVALUATION MODULE:

• Validates the generated code through syntactic checks, test cases, or human evaluation.

• Provides feedback for fine-tuning if necessary.

G. OUTPUT MODULE:

• Displays the final generated code to the user.

• May also provide alternative suggestions or comments.

Automatic Code Generator using a Transformer Model: Component Descriptions. This architecture outlines a common

pipeline for systems that automatically generate code from natural language descriptions, heavily relying on the power

of Transformer networks.

IV. METHODOLOGY

Module Description

The methodology for Code Generation Using Transformer Models involves a systematic sequence of stages that span

from data preparation to model deployment. The central objective is to train a Transformer-based system capable of

translating user-provided natural language descriptions into accurate, syntactically correct, and semantically meaningful

source code. The following steps outline the core processes involved.

A. Data Collection and Preparation

The foundation of effective code generation lies in the availability of large, diverse, and high-quality datasets. Code

repositories such as GitHub, CodeSearchNet, and The Pile serve as primary sources. These datasets include millions of

code snippets, functions, and complete programs across multiple programming languages.

Before training, the raw data undergoes preprocessing steps:

 Deduplication to remove redundant code samples.

 Cleaning to eliminate incomplete or corrupted files.

 Filtering based on licensing requirements to ensure ethical use of open-source code.

 Annotation (optional) where pairs of natural language descriptions and corresponding code snippets are

curated for supervised learning.

B. Preprocessing

 Both the natural language prompts and the code samples must be transformed into a format suitable for model

ingestion.

• Tokenization

Splits text and code into smaller units (tokens) using specialized tokenizers that handle programming language syntax

(e.g., handling brackets, commas, operators).

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, May 2025

 Copyright to IJARSCT DOI: 10.48175/568 94

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

• Encoding converts these tokens into vector representations (embeddings) that capture semantic and syntactic

information.

Specialized tokenization methods like Byte Pair Encoding (BPE) or SentencePiece are often used to handle both text

and code uniformly.

C. Model Selection & architecture

The core engine of the system is a Transformer model. Two main types of architectures can be used.

Encoder-Decoder Transformers (e.g., T5, CodeT5).

Useful when both understanding the input and generating structured output is crucial.

Decoder-Only Transformers (e.g., GPT-2, Codex).

 Focused on autoregressive generation, predicting the next token based on previous tokens.

The model incorporates:

Self-Attention Mechanisms to understand relationships within the input and output sequences.

Cross-Attention Mechanisms (in encoder-decoder models) to align the input text with the generated code sequence.

Positional Encodings to retain the order of tokens, essential for programming syntax.

D. Training Phase

 The model is trained using large batches of tokenized input-output pairs:

 Objective Function: Commonly, the Cross-Entropy Loss is used to measure the difference between the

predicted tokens and the actual tokens.

 Optimization Algorithms: Advanced optimizers like Adam or AdamW are utilized to update model weights

efficiently.

Regularization Techniques: Methods such as dropout, weight decay, and label smoothing are employed to prevent

overfitting Depending on the task, the training can be:

 Supervised Learning (with labeled prompt-code pairs)

 Self-Supervised Learning (predicting masked or missing tokens within code)

Transfer learning and fine-tuning strategies are also applied, where a pretrained language model is adapted to code-

specific tasks.

E. Interface & Code Generation

 The user provides a natural language prompt.

 The model tokenizes and encodes the input.

 Based on the prompt, the model generates code token-by-token using techniques like:

o Greedy Search (selecting the most probable token at each step)

o Beam Search (considering multiple possible sequences)

o Top-k Sampling or Nucleus Sampling (introducing randomness for more diverse outputs)

F. Post Processing

Post processing ensures the usability and correctness of the generated code:

 Syntax Checking: Automatic validation against the grammar rules of the target programming language.

 Formatting: Applying standard code formatting styles (e.g., PEP8 for Python).

 Execution Testing (optional): Running the generated code in sandbox environments to verify functional

correctness.

G. Evaluation & Validation

The performance of the code generation system is evaluated using various metrics:

 Exact Match Accuracy (whether the generated code exactly matches the expected output)

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, May 2025

 Copyright to IJARSCT DOI: 10.48175/568 95

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

 CodeBLEU Score (measures n-gram match, syntax match, and data-flow match)

 Functional Correctness (whether the generated code performs the intended task)

H. Deployment

After satisfactory evaluation, the trained model can be deployed into real-world applications:

 Integration into IDEs (e.g., VS Code, PyCharm)

 Web-based code assistants

 APIs for backend integration

 Educational tools for teaching programming

Security measures, model monitoring, and user feedback loops are also implemented to continually improve system

performance after deployment.

V. CONCLUSION

Transformer-based models have significantly transformed the landscape of automatic code generation, offering a

paradigm shift from traditional rule-based or statistical methods to deep learning-driven, context-aware generation.

Their ability to model long-range dependencies, understand sequence semantics, and capture contextual relationships

has made them particularly suitable for complex tasks in programming language understanding and generation.

Through extensive training on massive code corpora and natural language documentation, these models can now

generate code snippets, complete functions, translate between languages, and even write basic applications with

minimal human intervention. Tools like OpenAI Codex and GitHub Copilot exemplify this evolution, enabling

developers to work more efficiently, reduce cognitive load, and automate repetitive programming tasks.

Moreover, Transformer models are playing a pivotal role in redefining human-AI collaboration in software engineering.

They are not just limited to code synthesis; they support intelligent code completion, suggest bug fixes, generate tests,

and even provide documentation—all contributing to a more seamless and productive software development lifecycle.

The integration of these models within IDEs and development pipelines is also helping democratize coding, making it

more accessible to non-programmers and novice learners.

VI. FUTURE SCOPE

 Development of domain-specific transformer models (e.g., for finance, robotics).

 Enhancing logical reasoning and debugging capabilities in generated code.

 Integrating with IDEs for real-time code optimization and security alerts.

 Supporting multimodal inputs like diagrams or voice instructions.

 Legal and ethical research on intellectual property of generated code.

ACKNOWLEDGMENT

It gives us great pleasure in presenting the paper on “ Code Generation Using Transformer Models”. We would like to

take this opportunity to thank our guide, Prof. J. R. Mahajan, Professor, Department of Computer Engineering, Adsul’s

Technical Campus , Chas, for giving us all the help and guidance we needed. We are grateful to her for her kind

support, and valuable suggestions were very helpful.

REFERENCES

[1]. Enrique Dehaerne,Bappaditya Dey,Sandip Halder,Stefan De Gendt,Wannes Meert, “ Code Generation Using

Machine Learning : A Systematic Review ” IEEE Access 2022

[2]. Youngmi Park,Ahjeong Park,Chulyun Kim “ALSI-Transformer: Transformer-Based Code Comment

Generation With Aligned Lexical and Syntactic Information ” IEEE Access 2023

[3]. Das Namrata,Rakshay Pant,Neelam Karki,Ruchi Manandhar,Dinesh Baniya Kshatri“A Comparative Study on

Code Generation with Transformers” arXIV 2024

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, May 2025

 Copyright to IJARSCT DOI: 10.48175/568 96

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

[4]. Mark Chen, Jerry Tetal “Evaluating Large Language Models Trained on Code” arXiv2021

[5]. Wang Yue,W Wang, SJoty,Steven C“Code T5: Identifier –aware Unified Pre-Trained Encoder-Decoder

Models for code Understanding and Generation” arXiv2021

[6]. Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou,Bing Qin, Ting

Liu, Daxin Jiang, Ming Zhou “CodeBERT:A Pre-Trained Model for Programming and Natural

Languages”arXiv2020

[7]. Hamel Husain ,Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis Marc B “Code Search Net

Challenge:Evaluating the Semantic Code Search ”arXir2020

[8]. Vaswani, A., et al. "Attention is All You Need." NeurIPS, 2017

