

 International Journal of Advanced

 International Open-Access, Double

 Copyright to IJARSCT
 www.ijarsct.co.in

ISSN: 2581-9429

Restructuring Software

From Monoliths
Darshana
D. Y. Patil

Abstract: The shift from monolithic software architectures

in contemporary software development, offering improvements in scalability, flexibility, and

maintainability. This transformation addresses the limitations

reduced agility and challenges in scaling individual components. In contrast, microservices advocate for

a decentralized model, where independent services communicate via lightweight protocols, such

REST or message queues. This paper explores the key reasons for adopting microservices, including the

ability to support rapid deployment

delves into the core principles of microservices architecture, such as

contexts, and continuous delivery. The paper also addresses the technical and organizational hurdles of

migrating to microservices, including issues like

the need for comprehensive monitoring and logging. It presents practical approaches for transitioning

from a monolithic to a microservices

API gateways, and utilizing containerization technologies. The conclusion

aligning organizational structures with the new architectural approach, as highlighted by Conway’s

Law, to fully realize the advantages of this transformation

Keywords: monolithic software

The problem definition for implementing a milk dairy software syst

around addressing the complexities and challenges faced by traditional monolithic applications used in dairy operations.

This involves designing a system that can manage various functions

billing, customer management, and supply chain logistics

Key Challenges

Scalability Issues in Monolithic Systems:

Dairy operations often deal with varying

customer demands. Traditional monolithic software systems struggle to scale efficiently across different functionalities.

In a monolithic setup, scaling the entire system for

unrelated parts, which is inefficient and resource

Lack of Flexibility and Agility:

Dairy operations require agility to respond to dynamic changes in customer demand, supply chain disrupt

regulatory requirements. A monolithic system can become cumbersome and slow to update as all components are

tightly coupled. Making a change in one part of the system may require testing and deploying the entire application.

As the dairy business evolves, adding new features such as new payment methods, AI for demand prediction, or a

mobile app for delivery tracking becomes cumbersome without breaking the whole system.

Operational Complexity:

Dairy systems require robust data management capabilitie

channels, including inventory tracking, order processing, and customer management. Microservices can help by

I J A R S C T

International Journal of Advanced Research in Science, Communication and Technology

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 12, April 2025

 DOI: 10.48175/568

Software Architecture: Moving

Monoliths to Microservices
Darshana Dadaji Ahire and Dr. Dipalee D. Rane

Patil College of Engineering Akurdi, Pune, India

darshuahire@gmail.com

shift from monolithic software architectures to microservices has become a

in contemporary software development, offering improvements in scalability, flexibility, and

maintainability. This transformation addresses the limitations of tightly integrated systems,

reduced agility and challenges in scaling individual components. In contrast, microservices advocate for

a decentralized model, where independent services communicate via lightweight protocols, such

This paper explores the key reasons for adopting microservices, including the

ability to support rapid deployment cycles, enhance fault isolation, and optimize resource utilization. It

delves into the core principles of microservices architecture, such as domain-driven design, bounded

contexts, and continuous delivery. The paper also addresses the technical and organizational hurdles of

migrating to microservices, including issues like data consistency, greater operational complexity,

ehensive monitoring and logging. It presents practical approaches for transitioning

from a monolithic to a microservices-based system, such as incremental decomposition,

gateways, and utilizing containerization technologies. The conclusion emphasizes the importance of

aligning organizational structures with the new architectural approach, as highlighted by Conway’s

Law, to fully realize the advantages of this transformation.

I. INTRODUCTION

The problem definition for implementing a milk dairy software system using microservices architecture revolves

around addressing the complexities and challenges faced by traditional monolithic applications used in dairy operations.

This involves designing a system that can manage various functions—such as milk procurement, processing, inventory,

billing, customer management, and supply chain logistics—while ensuring scalability, flexibility, and resilience.

Scalability Issues in Monolithic Systems:

Dairy operations often deal with varying workloads, such as seasonal spikes in milk production, distribution, or

customer demands. Traditional monolithic software systems struggle to scale efficiently across different functionalities.

In a monolithic setup, scaling the entire system for one function (e.g., inventory management) means scaling other

unrelated parts, which is inefficient and resource-heavy.

Dairy operations require agility to respond to dynamic changes in customer demand, supply chain disrupt

regulatory requirements. A monolithic system can become cumbersome and slow to update as all components are

tightly coupled. Making a change in one part of the system may require testing and deploying the entire application.

evolves, adding new features such as new payment methods, AI for demand prediction, or a

mobile app for delivery tracking becomes cumbersome without breaking the whole system.

Dairy systems require robust data management capabilities to handle large volumes of transactions across various

channels, including inventory tracking, order processing, and customer management. Microservices can help by

Technology

Reviewed, Refereed, Multidisciplinary Online Journal

 272

Impact Factor: 7.67

Moving

 key approach

in contemporary software development, offering improvements in scalability, flexibility, and

systems, such as

reduced agility and challenges in scaling individual components. In contrast, microservices advocate for

a decentralized model, where independent services communicate via lightweight protocols, such as

This paper explores the key reasons for adopting microservices, including the

optimize resource utilization. It

driven design, bounded

contexts, and continuous delivery. The paper also addresses the technical and organizational hurdles of

complexity, and

ehensive monitoring and logging. It presents practical approaches for transitioning

 implementing

emphasizes the importance of

aligning organizational structures with the new architectural approach, as highlighted by Conway’s

em using microservices architecture revolves

around addressing the complexities and challenges faced by traditional monolithic applications used in dairy operations.

t, processing, inventory,

while ensuring scalability, flexibility, and resilience.

workloads, such as seasonal spikes in milk production, distribution, or

customer demands. Traditional monolithic software systems struggle to scale efficiently across different functionalities.

one function (e.g., inventory management) means scaling other

Dairy operations require agility to respond to dynamic changes in customer demand, supply chain disruptions, or

regulatory requirements. A monolithic system can become cumbersome and slow to update as all components are

tightly coupled. Making a change in one part of the system may require testing and deploying the entire application.

evolves, adding new features such as new payment methods, AI for demand prediction, or a

s to handle large volumes of transactions across various

channels, including inventory tracking, order processing, and customer management. Microservices can help by

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 12, April 2025

 Copyright to IJARSCT DOI: 10.48175/568 273

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

offering independent services for each function, making it easier to manage and optimize different operations separately

(e.g., one service for customer orders and another for inventory control).

Data Integrity and Consistency:

Monolithic systems struggle with data consistency when distributed over a network or across multiple locations (e.g.,

across dairy farms, processing plants, and distribution centers). Microservices architectures allow for better data

consistency models, such as eventual consistency or Saga patterns, making the management of distributed transactions

more reliable.

Objectives

The primary objective of this study is to investigate and understand the process of transitioning from monolithic

software architecture to microservices. The research aims to identify the limitations of monolithic systems and highlight

how microservices offer better modularity, scalability, and maintainability. Another key objective is to explore best

practices, strategies, and tools that can facilitate this architectural shift while minimizing risk.

II. PROPOSED SYSTEM

The purpose of this report is to outline a proposed system for transitioning from a monolithic architecture to a

microservices architecture. As organizations evolve and their software needs become more complex, the limitations of

monolithic applications—such as scalability issues, difficulty in deployment, and slow response to changing business

requirements—become apparent. This report details the proposed system architecture, the transition strategy, and the

benefits expected from this transition.

Current System Overview

The current system operates as a monolithic application, where all components are tightly coupled and share a single

codebase. This structure leads to challenges such as:

 Limited Scalability: Scaling requires duplicating the entire application, leading to inefficient resource usage.

 Slower Development: Coordination among teams is necessary for changes, which slows down the release of

new features.

 Difficult Maintenance: Any modification can affect the entire system, making debugging and upgrades

cumbersome.

 Proposed Microservices Architecture

The proposed architecture will decompose the monolithic application into distinct microservices based on business

capabilities. Each service will operate independently, communicate through APIs, and can be developed and deployed

by separate teams.

Key Components of the Proposed Architecture:

 User Service: Manages user authentication, profile information, and user-related operations.

 Registration Service: Handles the user registration process, including input validation and account creation.

 Product Service: Manages product catalog, inventory, and related functionalities.

III. TRANSITION STRATEGY

The transition from a monolithic architecture to microservices will be carried out in a phased approach to minimize

disruption and ensure a smooth migration.

Phase 1: Assessment and Planning

 Identify Business Capabilities: Conduct workshops to understand the existing functionalities and group them

into services.

 Define Service Boundaries: Establish clear boundaries for each microservice based on the identified business

capabilities.

Phase 2: Development of Microservices

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 12, April 2025

 Copyright to IJARSCT DOI: 10.48175/568 274

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

 Incremental Development: Start with less critical services to allow teams to gain experience. For example,

begin with the User Service and Registration Service.

 API Design: Create well-defined RESTful APIs for communication between services. Utilize tools like

Swagger for documentation.

Phase 3: Implementation of Infrastructure

 Containerization: Use Docker to package microservices for consistency across development and production

environments.

 Orchestration: Implement Kubernetes for managing containerized applications, automating deployment,

scaling, and operations.

Phase 4: Deployment and Testing

 CI/CD Pipeline: Establish a continuous integration and continuous deployment pipeline using tools like

Jenkins or GitLab CI/CD for automated testing and deployment.

 Monitoring and Logging: Integrate monitoring tools such as Prometheus and logging tools like ELK Stack to

monitor microservices performance.

Phase 5: Gradual Transition

 Strangler Fig Pattern: Gradually replace parts of the monolithic application with microservices. Route new

functionality to the microservices while maintaining the legacy system until full transition is achieved.

Benefits of Transition

The transition to microservices architecture is expected to yield several benefits:

 Improved Scalability: Each service can be scaled independently, allowing for optimized resource usage.

 Faster Time to Market: Development teams can work on different services simultaneously, accelerating the

delivery of new features.

 Enhanced Resilience: Fault isolation ensures that issues in one service do not bring down the entire

application.

 Technological Flexibility: Teams can choose the best technologies suited for each microservice, fostering

innovation.

IV. SYSTEM DESIGN AND SPECIFICATIONS

Data Flow Diagram

The data flow diagram is basically a diagram which describes how the data is flow and processed inside a system. The

data flow diagram (DFD) is a visual representation of data flow and processing of a system. The sequence as well as

timing process in the system is represented by the sequence diagram and the control flow is represented by the flow

chart.

Fig.: DFD Diagram

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 12, April 2025

 Copyright to IJARSCT DOI: 10.48175/568 275

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

The DFD is focuses on data processing in a system.

The DFD is very important for systems, which communicates with multiple systems. Because of high level user (might

be non technical) can understand easily how the system interact with other

systems. In what manner the data comes in and how they are processed in the system and what is the output.

Class Diagram

In software engineering, a class diagram in the Unified Modeling Language (UML) is a type of static structure diagram

that describes the structure of a system by showing the system’s classes, their attributes, operations (or methods), and

the relationships among objects.

Fig: Class Diagram

Activity Diagram:

Activity diagrams are graphical representations of work flows of stepwise activities and actions with support for choice,

iteration and concurrency. In the Unified Modeling Language, activity diagrams are intended to model both

computational and organizational processes (i.e. work flows). Activity diagrams show the overall flow of control.

Sequence diagrams are typically associated with use case realizations in the Logical View of the system under

development

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 12, April 2025

 Copyright to IJARSCT DOI: 10.48175/568 276

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

Fig.Activity Diagram

V. RESULTS

 Product microservices endpoint list.

Customer microservices endpoint list.

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 12, April 2025

 Copyright to IJARSCT DOI: 10.48175/568 277

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

Monolithic application endpoint list.

Fig. Eureka dashboard

Fig. Gateway port 9090

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 12, April 2025

 Copyright to IJARSCT DOI: 10.48175/568 278

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

Fig. Config repository

VI. SOFTWARE & HARDWARE SPECIFICATION

1. Development Frameworks

 Spring Boot: A popular framework for building Java microservices with built-in support for RESTful APIs,

security, and various data access technologies.

2. API Management

 Swagger / OpenAPI: Tools for designing, documenting, and consuming RESTful APIs. They allow for

automatic generation of API documentation and client SDKs.

3. Databases

 Relational Databases: Options like PostgreSQL, MySQL, or Microsoft SQL Server for structured data

management.

NoSQL Databases: Solutions such as MongoDB, Cassandra, or Redis for unstructured data and flexible schema

designs.

4. Testing Frameworks

 JUnit / TestNG: Frameworks for unit and integration testing in Java applications.

 Mocha / Chai: Testing frameworks for JavaScript, often used in conjunction with Node.js microservices.

 pytest: A testing framework for Python applications, useful for unit and functional testing of microservices.

Hardware Platform

An evaluation criterion for machine learning algorithms is the execution time. However, the execution time may vary

depending on the performance of the computer being used. Because of this, the technical specifications of the computer

used in the application are shared. The technical characteristics of the computer used in the implementation phase are

Central Processing Unit Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz 2.90 GHz

Random Access Memory 8 GB (7.74 GB usable)

Operating System Windows 10 Pro 64-bit

Space Complexity:

The space complexity depends on Presentation and visualization of discovered anomalies. More the storage of data

more is the space complexity.

Time Complexity:

Check No. of anomalies available in the network= n

If (n>1) then retrieving of information can be time consuming.

Hardware Specification:

Processor: Intel Pentium 3 or above

RAM : 2 GB or above

Hard Disk : 200 GB or above

Other Hardware : Monitor , Keyboard , Mouse etc.

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 12, April 2025

 Copyright to IJARSCT DOI: 10.48175/568 279

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

VII. FUTURE WORK

Future work in microservices architecture should focus on developing advanced tools for efficient service orchestration,

automation, and monitoring to address the growing complexity of managing multiple services. Research into enhanced

security protocols is essential to protect against the broader attack surface created by distributed systems. Additionally,

improving data consistency mechanisms across microservices, especially in real-time synchronization, remains a

critical area for optimization. Moreover, exploring strategies for integrating microservices with legacy systems and

developing hybrid architectures can facilitate smoother transitions for organizations migrating from monolithic systems.

These advancements will help businesses maximize the potential of microservices, ensuring scalability, flexibility, and

security in increasingly complex environments.

VIII. CONCLUSION

Defining the feature scope in microservices is crucial for the success of microservices architecture. It ensures that each

service remains focused, manageable, and aligned with business goals. By following the principles outlined above,

teams can effectively design and implement microservices that provide robust and scalable functionalities. Microservice

components collectively support the principles of microservices architecture, promoting independence, scalability,

resilience, and agility in application development and deployment

REFERENCES

[1]. N. Dragoni et al., “Microservices: Yesterday, today, and tomorrow,” in Present and Ulterior Software

Engineering, M. Mazzara and B. Meyer, Eds., Cham, Switzerland: Springer, 2017, pp. 195–216. [Online].

Available: https://doi.org/10.1007/978--3-319-67425- 4_12

[2]. M. Kalske, N. Mäkitalo, and T. Mikkonen, “Challenges when moving from monolith to microservice

architecture,” in Proc. Int. Conf. Web Eng., I. Garrigós and M. Wimmer, Eds., Cham, Switzerland: Springer,

2018, pp. 32–47. [Online]. Available: https://doi.org/10.1007/978--3-319-74433-9_3

[3]. N. C. Mendonça, C. Box, C. Manolache, and L. Ryan, “The monolith strikes back: Why Istio migrated from

microservices to a monolithic architecture,” IEEE Softw., vol. 38, no. 5, pp. 17–22, Sep./Oct. 2021.

[4]. [Online]. Available: https://doi.org/10.1109/MS.2021.3080335

[5]. Balalaie, A. Heydarnoori, P. Jamshidi, D. A. Tamburri, and T. Lynn, “Microservices migration patterns,”

Softw.: Pract. Experience, vol. 48, no. 11, pp. 2019–2042, 2018. [Online]. Available: https://doi.org/10.

1002/spe.2608

[6]. Lewis, J., & Fowler, M. (2014). Microservices: Decomposing applications for deployability and scalability.

https://martinfowler.com/articles/microservices.html

[7]. Alur, D., & Basu, A. (2017). Microservices and the journey from monolithic to distributed architectures.

Springer.

[8]. Dragoni, N., Giallorenzo, S., Lenzini, L., & Mazzara, M. (2017). Microservices: A survey of recent advances.

Software Engineering Conference (ICSE), 47-56.

[9]. Smith, B. (2019). The evolution of software architecture: From monolithic to microservices. Journal of

Software Engineering, 10(3), 120-130.

