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Abstract: Gastrointestinal (GI) bleeding is a common and potentially serious condition that requires timely 

and accurate diagnosis. Wireless Capsule Endoscopy (WCE) has emerged as a valuable tool for capturing 

images of the digestive tract without the need for invasive procedures. However, the manual review of these 

images is time-consuming and depends on the expertise of medical professionals. To improve efficiency and 

accuracy, we propose an automated deep learning-based approach for detecting and segmenting bleeding 

in WCE images. Our method leverages Swin Transformer for classifying bleeding and non-bleeding cases 

and employs UNet++ for precise segmentation of bleeding areas. We evaluate our approach using the 

WCEBleedGen dataset, achieving high accuracy in classification and precise segmentation in segmentation 

tasks. The integration of deep learning significantly boosts accuracy and efficiency, revolutionizing medical 

image analysis. Providing clear visualizations of bleeding regions, this method minimizes human error and 

streamlines the diagnostic process. The results demonstrate the potential of artificial intelligence in 

healthcare, making medical diagnostics more reliable and effective. Future research should focus on 

expanding the dataset diversity and integrating real-time processing capabilities to further enhance the 

system's reliability and speed. Continuous improvements in AI-driven methodologies will contribute to the 

evolution of automated GI diagnostics, offering even greater support to healthcare professionals in disease 

detection and treatment planning.. 
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I. INTRODUCTION 

Gastrointestinal (GI) bleeding is a serious medical condition that requires early detection and intervention to prevent 

complications. Traditional endoscopic techniques, such as colonoscopy and esophagogastroduodenoscopy (EGD), are 

effective in detecting bleeding but are invasive, costly, and require sedation. Moreover, these methods do not provide 

continuous monitoring, which limits their ability to detect intermittent bleeding. To address these limitations, Wireless 

Capsule Endoscopy (WCE) has emerged as a non-invasive and patient-friendly alternative, allowing continuous 

visualization of the GI tract. In WCE, the patient swallows a small capsule equipped with a camera that captures 

thousands of images as it travels through the digestive system. While this approach provides comprehensive imaging, 

the manual analysis of WCE images is highly labor-intensive and subjective, making automated bleeding detection a 

critical area of research. Deep learning offers a promising solution by enabling efficient and highly accurate 

classification and segmentation of medical images, reducing the diagnostic workload and improving early detection. 

Deep learning-based models, particularly Convolutional Neural Networks (CNNs), have been widely used for medical 

image analysis, including WCE images. However, CNNs often struggle with capturing long-range dependencies and 

contextual relationships, limiting their ability to accurately detect subtle bleeding patterns in endoscopic images. To 

overcome these challenges, recent advancements in Vision Transformers (ViTs) have been explored, offering superior 

performance in medical imaging tasks by utilizing self-attention mechanisms to process images more effectively. In this 

study, we propose a deep learning-based framework for GI bleeding detection and segmentation using Swin 

Transformer for classification and UNet++ for segmentation. Our approach leverages Swin Transformer's hierarchical 

feature extraction to improve classification accuracy and UNet++'s nested skip connections to enhance segmentation 
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precision. By integrating these two advanced models, we aim to provide an efficient, automated solution for GI 

bleeding detection in WCE images. The first step involves classifying WCE images into bleeding and non-bleeding 

categories. Swin Transformer, a hierarchical Vision Transformer, is chosen due to its ability to capture long- range 

dependencies and contextual features more effectively than CNNs. It processes WCE images in shifted windows, 

enabling multi-scale feature learning while maintaining computational efficiency. This improves the detection of 

bleeding regions, even in complex or low-contrast images. Once the bleeding images are identified, it is essential to 

precisely localize the bleeding regions for clinical decision-making. We employ UNet++, an advanced version of the 

UNet model, designed to improve segmentation accuracy through nested and dense skip connections. These 

connections enhance feature propagation and refine segmentation boundaries, ensuring better localization of bleeding 

areas. This is particularly useful for small and subtle bleeding regions, which might be missed by traditional 

segmentation models. We train and evaluate our model using the WCEBleedGen dataset, a curated dataset for GI 

bleeding detection. It contains bleeding images with corresponding bounding boxes and segmentation masks, along 

with non-bleeding images serving as negative samples for classification. To improve model generalization, data 

augmentation, normalization, and image resizing are applied during preprocessing. To assess the performance of our 

framework, we use standard evaluation metrics. For classification, we measure Accuracy, Precision, Recall, and F1-

score to evaluate Swin Transformer’s ability to distinguish between bleeding and non-bleeding images. For 

segmentation, we use Dice Coefficient and Intersection-over-Union (IoU) to determine how accurately UNet++ 

localizes bleeding regions. Experimental results show that our model outperforms traditional CNN- based methods, 

achieving higher classification accuracy and better segmentation precision. The use of Swin Transformer improves the 

recognition of bleeding patterns, while UNet++ ensures more precise and reliable segmentation of bleeding areas. Our 

proposed framework significantly enhances automated bleeding detection and segmentation in WCE images, 

addressing the key challenges of manual WCE analysis. By integrating Swin Transformer and UNet++, our model 

reduces the diagnostic workload, helping gastroenterologists analyze WCE images more efficiently. It also improves 

detection accuracy, leading to early intervention and better patient outcomes. Furthermore, precise bleeding localization 

assists in treatment planning and clinical decision-making. Overall, this study demonstrates the potential of AI-driven 

medical imaging solutions in revolutionizing WCE analysis. By automating the detection and segmentation of bleeding 

regions, our approach enhances clinical efficiency, reduces human errors, and contributes to improved healthcare 

outcomes. 

 

1.1 Problem Statement:  

Gastrointestinal (GI) bleeding is a serious medical condition that, if left undetected, can lead to severe complications, 

including anemia, shock, or even death. Wireless Capsule Endoscopy (WCE) has revolutionized GI diagnostics by 

enabling non- invasive, real-time visualization of the digestive tract. However, the manual review of WCE images is 

highly time-consuming, labor-intensive, and prone to human error, as it requires clinicians to examine thousands of 

frames per patient. Missed or delayed detection of bleeding can result in misdiagnosis and ineffective treatment. 

 

1.2 Objectives 

 Implement Swin Transformer to classify WCE images into bleeding and non-bleeding categories. 

 Leverage the self-attention mechanism of Swin Transformer to improve feature representation and 

classification accuracy. 

 Ensure the model generalizes well to different WCE datasets by implementing data augmentation and transfer 

learning techniques. 

 Utilize Swin-Unet and UNet++ for precise segmentation of bleeding regions in WCE images. 

 Optimize model parameters to reduce computational complexity and improve inference time for real-time 

applications. 

 Develop a computer-aided diagnosis (CAD) system that assists healthcare professionals in analyzing WCE 

images. 
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II. LITERATURE SURVEY 

Wireless Capsule Endoscopy (WCE) has rapidly emerged as a pivotal modality for non-invasive gastrointestinal (GI) 

diagnostics, particularly effective for the detection of obscure GI bleeding, which often evades conventional endoscopic 

techniques. The inherent challenges in WCE, including voluminous video data, heterogeneous visual patterns, and 

variable lighting conditions, necessitate the deployment of robust, scalable, and accurate automated bleeding detection 

algorithms. Brzeski et al. [1] propose an enhanced convolutional neural network (CNN) framework integrating visual 

feature maps with saliency attention to magnify bleeding-prone regions. Their model is architected to capture low-level 

color intensities and mid-level texture variations while leveraging contextual encoding layers to ensure discriminative 

feature learning across varying GI topographies. 

In the realm of super pixel-based modeling, Liu et al. [2] devised a bleeding detection algorithm grounded in adaptive 

over segmentation techniques. By decomposing WCE frames into homogeneous super pixels using SLIC (Simple 

Linear Iterative Clustering), their method isolates compact perceptual units, within which chromatic and spatial 

consistency is maintained. These super pixels are then analyzed through a specialized feature extraction protocol that 

encodes hue variance, spatial entropy, and local contrast, effectively discriminating hemorrhagic tissues from non-

pathological mucosa. The model leverages structural uniformity and boundary preservation to minimize intra-class 

ambiguities, outperforming baseline pixel-wise methods. Building upon region-based segmentation paradigms, Bchir et 

al. [3] introduced a multiple bleeding detection system that synergizes thresholding heuristics with supervised 

classification algorithms. Their approach employs an intelligent region-growing mechanism augmented by a 

probabilistic bleeding likelihood function, which iteratively classifies candidate regions based on red chromaticity 

features and spatial proximity metrics. The classifier is trained on a curated dataset encompassing diverse bleeding 

morphologies, facilitating generalization across diffuse, active, and residual bleeding types within the GI lumen. 

Musha et al. [4], in a sweeping systematic review, dissect the landscape of computer- aided bleeding detection 

algorithms through a multifactorial lens. The review catalogs methodologies across a temporal axis, highlighting the 

evolutionary trajectory from rule- based classifiers to state-of-the-art transformer models. Notably, they emphasize the 

growing trend towards hybrid architectures that fuse CNN-based encoders with attention-guided decoders, as well as 

the increasing incorporation of domain adaptation techniques to mitigate dataset heterogeneity and annotation 

scarcity—two persistent bottlenecks in clinical AI. Rathnamala and Jenicka [5] advanced a GMM-super pixel-based 

bleeding detection framework that operationalizes probabilistic modeling for color distribution extraction within 

homogeneous regions. The pipeline is constructed upon a multi-resolution analysis scheme, enabling the system to 

accommodate both coarse and fine-grained bleeding manifestations. The Gaussian Mixture Model, optimized via 

expectation-maximization, learns bleeding- related chromatic clusters which are subsequently used to probabilistically 

label super pixels. This dual-layered statistical reasoning introduces robustness against inter-patient variability and 

image noise. 

In a complementary systematic investigation, Musha et al. [6] reiterate the need for explainable AI systems in WCE 

diagnostics. They critique the interpretability gap in existing deep learning frameworks, particularly when deployed in 

high-stakes clinical decision- making scenarios. Their analysis stresses the exigency for attention visualization, 

confidence scoring, and radiologist-in-the-loop feedback mechanisms to foster trust and usability in real- world clinical 

settings. Their findings also highlight the nascent field of few-shot learning and synthetic data augmentation as 

potential frontiers for circumventing data scarcity issues. Ghosh and Chakareski [7] champion the application of deep 

transfer learning for intestinal bleeding detection, positing that domain-specific fine-tuning of large-scale pretrained 

models can substantially ameliorate the sample inefficiency endemic to medical imaging tasks. By adapting ImageNet-

pretrained ResNet architectures to the WCE domain, they manage to retain generalized feature abstraction capabilities 

while incorporating domain-specific bleeding semantics via progressive fine-tuning. Their evaluation demonstrates 

superior classification accuracy under limited training conditions and high inter-class variance. 

A landmark contribution to the domain of WCE benchmarking comes from Handa et al. [8], who introduced the 

WCEbleedGen dataset—a meticulously curated corpus of annotated WCE frames categorized across classification, 

detection, and segmentation tasks. The dataset encompasses a wide spectrum of bleeding appearances, camera angles, 
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and anatomical regions, rendering it an ideal testbed for algorithmic benchmarking and cross- model validation. 

Additionally, the inclusion of multi-label ground truth segmentation masks enables the training of both coarse-grained 

classifiers and fine-grained pixel-wise segmentation models, fostering advancements in supervised and weakly-

supervised learning paradigms. In a seminal comparative study, Pogorelov et al. [9] conducted a methodical evaluation 

of color and texture-based features for bleeding detection. They underscore the limitations of relying solely on color 

metrics—particularly under variable lighting and compression artifacts—highlighting that bleeding may manifest 

across a diverse range of red tones, which can be visually confounded with non-pathological elements like food debris 

or bile. Their findings suggest that integrating texture descriptors such as Local Binary Patterns (LBP) and Gabor filters 

enhances model robustness, facilitating more consistent detection across complex GI environments. 

Ghosh et al. [10] devised the CHOBS methodology, wherein statistical analysis of color histograms across block-wise 

image segments is employed to detect bleeding manifestations. Their approach benefits from both spatial and chromatic 

normalization, allowing the model to account for local color fluctuations while preserving region-specific semantics. 

This lightweight architecture is particularly well-suited for real-time implementation on embedded platforms used in 

capsule endoscopy hardware, demonstrating clinically acceptable inference latency and resource efficiency. Li and 

Meng [11] laid the foundational work in bleeding detection using morphological analysis and heuristic-based 

thresholding. Although simplistic by contemporary standards, their work is seminal in its delineation of red hue 

thresholds and geometric descriptors for bleeding region identification. Their handcrafted pipeline operationalized hue 

saturation thresholds alongside shape-based filtering to exclude false positives induced by vascular artifacts and luminal 

debris. 

Alavala et al. [12] presented a bleeding detection architecture employing a fusion of Swin Transformer for hierarchical 

feature extraction and RTDETR for object localization. This dual-module framework exploits window-based attention 

mechanisms and dense spatio-temporal embeddings to capture both macro-level scene context and micro-level tissue 

anomalies. Their method achieves real-time inference capabilities while preserving high- resolution spatial accuracy, 

demonstrating potential for clinical deployment in autonomous diagnostic systems. Singh et al. [13] introduced 

ColonNet, a hybrid model architecture integrating DenseNet121 and U-Net. The DenseNet backbone captures deep 

hierarchical features from input WCE frames, which are then decoded via a U-Net-based segmentation head. This 

hybridization ensures that both global context and local detail are retained, enabling the model to delineate bleeding 

zones with surgical precision. The model also integrates skip connections and auxiliary loss functions to mitigate 

vanishing gradients and enhance convergence dynamics. 

Lin et al. [14] proposed a two-stage bleeding localization approach rooted in modular decomposition of WCE imagery. 

Their divide-and-conquer model separates anatomical parsing from hemorrhagic inference, thereby isolating tissue-

specific visual semantics prior to detection. This decomposition facilitates more accurate distinction between similar-

looking pathological features and improves performance in complex anatomical landscapes marked by shadows, fluid 

residues, and peristaltic artifacts. Balasubramanian et al. [15] unveiled ClassifyViStA, a transformer-driven architecture 

incorporating segmentation-aware visual attention modules. The system employs a multi-head attention mechanism to 

extract context- aware embeddings while attending to bleeding-prone regions identified via an auxiliary segmentation 

head. This dual-channel architecture not only boosts classification precision but also facilitates model interpretability 

via attention-based visual saliency maps. Alawode et al. 

[16] further push the boundary of transformer-based architectures by proposing a bleeding detection pipeline that 

integrates spatial transformers and temporal aggregation layers. Their model, capable of capturing long-range 

dependencies and sequential frame correlations, delivers heightened sensitivity in detecting transient and low-contrast 

bleeding instances that often elude conventional frame-wise classifiers. 

Ghosh, Li, and Chakareski [17] engineered a semantic segmentation framework tailored for bleeding region 

delineation, incorporating dilated convolutions and pyramid pooling modules to capture multi-scale contextual 

information. Their model is optimized for edge preservation and small-object segmentation, enabling precise boundary 

localization of bleeding zones—an essential requirement for quantifying lesion severity and guiding therapeutic 

interventions. Bchir et al. [18], transitioning from handcrafted features to CNNs, developed a deep learning-based 

multi-bleeding detection model capable of processing complex WCE image patterns with variable bleeding intensity. 
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Their model incorporates dual-branch convolutional pathways—one focused on color-based features, the other on 

texture—to enhance robustness against color noise and anatomical confounds. 

Rustam et al. [19] introduced a CNN-based classification model tailored to WCE imagery, leveraging extensive data 

augmentation and dropout regularization to prevent overfitting. Their pipeline emphasizes architecture simplicity while 

achieving state-of-the-art classification performance on publicly available WCE datasets, reinforcing the utility of 

lightweight models in constrained clinical settings. Rani et al. [20] presented a custom deep learning model designed 

for the classification of GI bleeding using optimized convolutional blocks and activation functions. Their method 

emphasizes class balance via weighted loss functions and employs stratified sampling to ensure representative training 

across minority classes. Their results indicate high recall and precision, particularly in detecting early-stage 

hemorrhagic lesions critical for timely clinical intervention. In synthesis, this corpus of literature encapsulates a 

comprehensive evolution from classical image processing techniques to cutting-edge deep learning and transformer-

based frameworks. The overarching trend gravitates toward architectures that are not only performance-optimized but 

also interpretable, robust to real-world artifacts, and adaptable across diverse clinical scenarios. Continued research 

efforts in this domain are poised to deliver increasingly autonomous, accurate, and scalable bleeding detection systems 

that will fundamentally reshape GI diagnostics. 

 

COMPARISION TABLE OF LITERTURE SURVEY 

Table 1: comparison table 

SNO Title Year Merits Demerits Future Gaps 

1 Visual Features for 

Improving Endoscopic 

Bleeding Detection Using

 CNNs [1] 

2023 Incorporates visual saliency 

and deep convolutional 

layers, achieving  high 

sensitivity in detecting

bleeding regions with 

spatial attention. 

Limited adaptability

when tested on 

datasets with different

lighting or anatomical 

diversity, suggesting

low cross-domain 

robustness. 

Requires 

comprehensive 

evaluation across

multi- institutional 

datasets with domain 

generalization 

techniques 

2 Feature Detection via 

Superpixel Segmentation 

[2] 

2019 Superpixel segmentation

isolates homogeneous 

regions, enhancing local 

feature representation and

reducing computational 

load. 

Performance degrades

with irregular 

boundaries or in 

presence  of strong

artifacts like bile or

food residues. 

Needs integration

with deep neural 

networks  for 

dynamic superpixel 

refinement and 

contextual 

interpretation. 

3 Multiple Bleeding 

Detection in WCE 

[3] 

2019 Employsprobabilistic region

analysis and supervised 

learning  for multi-type 

bleeding detection, 

accommodating diffuse and 

concentrated bleeding. 

Suffers from over-

segmentation and 

classification errors in

low contrast or 

shadowed areas. 

Development of 

adaptive hresholding

and uncertainty 

modeling for robust

multi- instance 

predictions. 

4 Systematic Review

 of Bleeding 

Detection Algorithms [4] 

2023 Offers a panoramic 

synthesis  of bleeding 

detection methods, from 

traditional to deep learning 

paradigms, aiding 

comprehensive 

understanding. 

Lacks experimental 

validation  or 

benchmarking 

framework for 

comparative 

performance. 

Future works 

should implement 

benchmarking 

platforms  

with standardized 

evaluation metrics. 

5 GMM-based Color 2021 Utilizes statistical modeling Inconsistent Demands adaptive 
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Feature Extraction [5] through Gaussian 

Mixture Models 

performance under

varied lighting and

color distortion due to 

non-uniform 

illumination 

normalization and

spatial awareness 

10 CHOBS: 

Histogram- based 

Detection [10] 

2018 Utilizes block-level 

statistical color histograms, 

ensuring  low complexity

and fast inference suitable  

for embedded systems. 

Does not 

generalize well to 

subtle or early- stage 

bleeding due to

reliance on dominant 

color cues. 

Could benefit 

from hybridization 

with CNNs for better

semantic 

representation of  

local patterns. 

11 Classical Hue-

Thresholding Approach

[11] 

2009 Pioneering technique that 

sets foundational baselines

using simple hue and 

morphology- based

detection rules. 

Extremely limited 

under complex 

lighting, overlaps with

non-bleeding red- 

colored structures. 

Should  be 

restructured into 

preprocessing or

assistive components

in modern AI 

pipelines. 

12 Swin Transformer + 

RTDETR 

Pipeline [12] 

2024 Integrates hierarchical 

attention (Swin 

Transformer) with efficient 

object detection (RTDETR), 

offering high 

accuracy and speed. 

Computationally 

expensive and requires

significant hardware 

acceleration for real-

time use. 

Future efforts should

focus on model 

compression, 

quantization, and

attention distillation. 

13 ColonNet: DenseNet

 + UNet Hybrid 

[13] 

2024 Combines deep feature 

extraction with pixel-level 

localization, achieving 

superior results in bleeding 

segmentation and 

classification. 

Demands high 

memory  and 

computation resources, 

especially during 

training with large 

images. 

Incorporating 

lightweight encoders

or knowledge 

distillation can 

mitigate resource 

constraints. 

14 Two-Stage Divide& 

Conquer Model [14] 

2024 Separates anatomical 

parsing from bleeding

inference, which 

significantly reduces false 

positives and enhances 

contextual reasoning. 

Introduces latency due 

to multi-stage pipeline

and additional 

computational 

overhead. 

Joint training of 

parsing and 

detection modules  or 

real-time fusion 

strategies could 

improve efficiency 

15 ClassifyViStA with

 Visual Attention

[15] 

2024 Employs visual attention 

combined with 

segmentation masks,

yielding both interpretability 

and precision in detection. 

Performance highly

depends on the 

availability of dense 

segmentation labels for

training. 

Research  into 

weakly- supervised 

attention 

mechanisms may

reduce dependency o

costly annotations. 

16 Transformer- Based 

Bleeding Detection [16] 

2024 Captures long- range 

dependencies and temporal 

transitions, allowing 

detection of transient 

bleeding episodes. 

Inference latency and

memory requirements

are substantial for 

practical deployment. 

Future solutions 

should investigate 

sparse attention and

edge- device 

optimization for real-

time application. 

17 Deep Semantic 2018 Effective  for small-object High computational Lightweight 
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Segmentation with

Pyramid Pooling [17] 

segmentation with precise 

boundary mapping due to 

multiscale pyramid pooling  

and dilated convolutions. 

complexity limits its

 integration 

into embedded or 

portable devices. 

segmentation 

networks or adaptive

feature pruning 

strategies could 

bridge this gap. 

18 Deep Learning for 

Multiple Bleeding Types 

[18] 

2023 Dual-branch CNN captures 

both color and texture

aspects, increasing 

resilience to variations in

bleeding appearance. 

Suffers from class 

imbalance, particularly

 for 

rare or low- volume 

bleeding patterns. 

Class rebalancing 

through generative 

augmentation or

 synthetic 

data training 

should be explored 

19 CNN-Based Classification 

with Augmentation [19] 

2021 Achieves reliable 

performance using a simple 

architecture reinforced by 

comprehensive data 

augmentation and dropout 

techniques. 

Limited capability to

handle sequential 

dependencies or subtle

bleeding transitions. 

Incorporation of 

temporal modeling

or video-based 

feature learning 

would enhance 

continuity 

understanding. 

20 GI Bleeding 

Classification via 

 Custom CNN 

[20] 

2024 Demonstrates high 

performance through

tailored  loss weighting   

and class-balanced 

sampling, improving 

minority class recall. 

Requires frequent 

parameter tuning and

architectural 

adjustments across

different datasets. 

Meta-learning 

strategies  or 

adaptive 

hyperparameter 

frameworks could

yield moreflexible 

models. 

 

III. SYSTEM REQUIREMENTS 

To develop and implement the deep learning-based bleeding classification and segmentation framework, the following 

hardware and software requirements are needed: 

3.1 Hardware Requirements: 

The system should have a multi-core processor, with a minimum requirement of an Intel Core i5 (10th Gen) or AMD 

Ryzen 5, while an Intel Core i7/i9 (12th Gen) or AMD Ryzen 9 is recommended for faster computations. Since deep 

learning models require extensive computations, a dedicated GPU is essential. The minimum GPU requirement is 

NVIDIA GTX 1650 (4GB VRAM), but for faster training and inference, a NVIDIA RTX 3090 or A100 (24GB+ 

VRAM) is preferred. For smooth execution, the system should have at least 16GB of DDR4 RAM, though 32GB or 

more DDR5 RAM is recommended for handling large datasets efficiently. Additionally, a 256GB SSD with a 1TB 

HDD is the minimum storage requirement, but a 1TB NVMe SSD is ideal for faster data access. 

 

3.2 Software Requirements: 

The implementation requires Python 3.8 or later as the primary programming language. For deep learning, the system 

must have PyTorch 2.0+ or TensorFlow 2.8+ along with CUDA 

11.8+ and cuDNN 8.0+ for GPU acceleration. Image processing will be handled using OpenCV and PIL (Pillow), while 

NumPy and Pandas will be used for data handling.To train and evaluate models, tools like PyTorch Lightning and 

TensorFlow-Keras are essential. The segmentation models will utilize MONAI and Albumentations for medical image 

processing. For data visualization, Matplotlib, Seaborn, and TensorBoard will be used. Model development and 

debugging can be done in Jupyter Notebook, VS Code, or PyCharm. 
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3.3 Additional Requirements: 

It is also recommended to use Conda or Virtualenv for managing dependencies and ensuring a stable working 

environment. If cloud-based training is required, services like Google Colab Pro, NVIDIA DGX servers can be used. 

These requirements ensure the efficient training, inference, and evaluation of deep learning models for automated 

bleeding detection and segmentation in WCE images. 

 

IV. METHODOLOGY 

Dataset 

The task at hand involves performing classification and segmentation on endoscopic images to detect bleeding vs. non-

bleeding regions. The dataset used for this purpose is a custom collection of endoscopic images, consisting of 1309 

images labeled as "bleeding" and 1309 images labeled as "non-bleeding," totaling 2618 images. Each image contains 

important visual information about the presence or absence of bleeding, making it suitable for binary classification 

tasks. 

The dataset is split into two parts: 

1. Classification Task: The classification task involves distinguishing between bleeding and non-bleeding images. This 

is achieved by analyzing the global visual patterns and characteristics of the images, such as color, texture, and overall 

structure. 

2. Segmentation Task: The segmentation task involves identifying specific regions within the image that correspond to 

bleeding. This requires the model to not only classify the image as bleeding or non-bleeding but also to highlight the 

exact pixels or regions affected by bleeding. 

The images in this dataset are annotated with binary labels: 0 for non-bleeding and 1 for bleeding. The segmentation 

masks provide pixel-level labels, allowing the model to learn spatial features relevant to detecting bleeding areas. 

The dataset is processed with the following preprocessing steps: 

• CLAHE (Contrast Limited Adaptive Histogram Equalization) is applied to enhance the contrast of the images, 

improving the visibility of bleeding areas, especially in low-light conditions. 

• Lab Color Space Transformation: The images are converted from the RGB color space to the Lab color space to 

separate the intensity (L) from the color channels (a and b). This aids in better feature extraction for both classification 

and segmentation tasks. 

 The dataset is used for training and evaluating models on two tasks: 

1. Binary Classification: The model learns to classify images as either bleeding or non- bleeding. 

2. Image Segmentation: The model learns to segment the image, identifying the exact regions that correspond to 

bleeding. 

This dataset provides a comprehensive framework for training deep learning models, combining both global image 

classification and pixel-wise segmentation tasks. The evaluation metrics for these tasks include accuracy, IoU 

(Intersection over Union), and Dice coefficient, which assess the performance of the models in both distinguishing 

bleeding vs. non-bleeding images and accurately identifying bleeding regions in segmentation masks. 

 

4.1 Classification task: 

The classification task was performed on the Auto WCEBleedGen dataset, consisting of endoscopic images categorized 

into two classes: bleeding and non-bleeding. Each class contains a total of 1309 images, which were preprocessed to 

standardize input formats and enhance model training. The dataset was further divided into training, validation, and test 

sets. The splits were performed using stratified sampling to ensure that both classes were evenly distributed across each 

subset, mitigating any class imbalance issues. 

The images were stored in directories labeled 'bleeding' and 'non-bleeding', and only image files with .jpg and .png 

extensions were considered during the dataset preparation process. The train-test-validation split was done in two 

stages: first splitting the dataset into training+validation and testing sets, and then further splitting the 

training+validation set into separate training and validation sets. The final split resulted in the following subsets: 

• Training set: 80% of the dataset 
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• Validation set: 10% of the dataset 

• Test set: 10% of the dataset 

 

4.1.1 Data Preprocessing and Augmentation: 

The images were loaded using Python’s PIL library, where each image was converted to 

RGB format to ensure consistent color channels across the dataset. To prepare the data for input into the model, a series 

of preprocessing steps and augmentations were applied using PyTorch's torchvision.transforms module. 

For the training set, several data augmentation techniques were applied to increase the variability of the input data, 

which helps improve the generalization ability of the model. These augmentations included: 

• Random horizontal flips: To account for the different orientations of endoscopic images. 

• Random rotations: To simulate various orientations of the camera and view. 

• Random resizing and cropping: To simulate different zoom levels and scales of endoscopic views. 

• Normalization: The pixel values were normalized using the mean and standard deviation values of the ImageNet 

dataset, since the Swin Transformer model was pre- trained on ImageNet. This normalization step ensures that the 

model's pre-trained weights can be effectively fine-tuned. 

 

4.1.2 Model Selection and Architecture: 

For the classification task, we utilized the Swin Transformer model (specifically, swin_tiny_patch4_window7_224 

variant) from the timm library. The Swin Transformer is a state-of-the-art vision transformer model that has shown 

superior performance on various image classification tasks, particularly in medical image analysis, due to its ability to 

capture long-range dependencies across images efficiently. 

We selected the Swin Tiny variant due to its smaller size, which balances efficiency and performance for a dataset of 

this scale. The model was initially pre-trained on the ImageNet dataset, and the weights from this pre-training were 

used to fine-tune the model on our endoscopic dataset. The final layer of the model was adjusted to have two output 

units, corresponding to the binary classification task: bleeding (class 1) and non-bleeding (class 0). 

The Swin Transformer (Shifted Window Transformer) is a state-of-the-art model architecture for vision tasks, 

introduced to improve upon traditional Vision Transformers (ViTs). Unlike earlier ViT architectures that process 

images in a fully global manner (where every pixel interacts with every other pixel), the Swin Transformer is designed 

to be more computationally efficient by introducing local windows and hierarchical feature learning. The key 

innovation of the Swin Transformer lies in its shifted windowing mechanism, which allows it to capture both local and 

global contexts in a more computationally efficient way than traditional transformers. 

 

4.1.3 Key Concepts Behind the Swin Transformer: 

1. Window-based Self-Attention: The Swin Transformer divides the image into small non-overlapping windows (local 

patches), and within each window, it performs self- attention. This contrasts with the standard Vision Transformer, 

where attention is computed globally across the entire image. 

o Local Attention: Within each window, attention is computed between the patches in that window. This reduces the 

computational complexity significantly as the attention mechanism is limited to a local region, rather than the entire 

image. 

o Computational Efficiency: Traditional transformers compute attention between all patches, which has a time 

complexity of O(N2)O(N^2)O(N2) where NNN is the number of patches. The window-based approach in Swin 

Transformer reduces this to O(N⋅M)O(N \cdot M)O(N⋅M), where MMM is the window size, making it computationally 

more efficient. 

2. Shifted Windowing Scheme: One of the primary innovations in the Swin Transformer is the shifted window scheme, 

which enhances the model's ability to capture long-range dependencies without incurring the high computational cost of 

global self-attention. 

 



I J A R S C T    

    

 

               International Journal of Advanced Research in Science, Communication and Technology  

                               International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal 

Volume 5, Issue 7, April 2025 

 Copyright to IJARSCT         DOI: 10.48175/IJARSCT-25499  594 

    www.ijarsct.co.in  

 
 

ISSN: 2581-9429 Impact Factor: 7.67 

 
o In a typical self-attention mechanism, each token (patch) attends to every other token. This is computationally 

expensive for high-resolution images. In Swin Transformer, images are first divided into non-overlapping windows, 

and attention is calculated locally within each window. 

o To enable interaction between adjacent windows, the windows are shifted between successive layers. This shift 

allows for cross-window connections, providing the model with a mechanism to learn long-range dependencies without 

the need for global attention. 

o The window shift operation ensures that patches from different windows can interact with each other while 

maintaining efficient computation. 

3. Hierarchical Feature Representation: Swin Transformer uses a hierarchical architecture, meaning the feature map size 

decreases at each stage, similar to how CNNs downsample feature maps. This allows Swin Transformer to capture 

features at multiple scales, which is essential for tasks like object detection and segmentation. Each layer of the Swin 

Transformer is designed to operate at progressively larger scales by increasing the patch size and reducing the spatial 

resolution. 

o Patch Merging Layers: After a few stages, the Swin Transformer performs a patch merging operation, which reduces 

the spatial resolution while increasing the number of channels, similar to the pooling operations in CNNs. This 

operation allows the model to capture higher-level features as it progresses through deeper layers. 

4. Transformer Encoder Blocks: The Swin Transformer architecture consists of multiple transformer encoder blocks. 

These blocks are repeated multiple times to create a deep architecture. Each transformer block contains: 

o Window-based Multi-Head Self-Attention (W-MSA): Computes attention within the local windows. 

o Shifted Window-based Multi-Head Self-Attention (SW-MSA): In the subsequent layer, the windows are shifted to 

allow interaction between adjacent windows. 

o Feed-Forward Networks (FFN): After attention, the model applies a simple feed-forward network to process the 

features further. 

o Layer Normalization and Residual Connections: To stabilize training and improve performance, Swin Transformer 

uses layer normalization and residual connections. 

5. Efficient and Scalable: The key benefit of Swin Transformers over the original ViTs is their scalability and 

efficiency. The window-based self-attention significantly reduces the computational burden, and the hierarchical design 

allows the model to scale to higher resolutions. These attributes make Swin Transformers particularly suitable for 

vision tasks like image classification, object detection, and semantic segmentation. 

 

4.1.4 Architecture of the Swin Transformer: 

The Swin Transformer model consists of four stages, each operating at a different spatial resolution: 

1. Stage 1: 

o Initial patch embedding and the first set of attention layers. 

o The image is divided into small patches, and local window-based attention is applied. 

o The output of this stage is a set of features that are used as input to the next stage. 

2. Stage 2: 

o More window-based attention is applied, and the spatial resolution is reduced (via patch merging). 

o This stage captures slightly higher-level features and continues the hierarchical processing. 

3. Stage 3: 

o The model continues to reduce the spatial resolution while increasing the depth of the feature maps. 

o Attention is computed across larger windows to capture broader contextual information. 

4. Stage 4: 

o The final stage applies the deepest level of processing, where the model learns the most abstract features. 

o The output from this stage is then passed through a classification head or other task-specific heads (for segmentation, 

detection, etc.). 
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Each of these stages is connected by a series of multi-head self-attention blocks, feed- forward layers, and residual 

connections. These stages allow the Swin Transformer to gradually build up features from local to global contexts while 

maintaining computational efficiency. 

Figure 4.1.1 Swin-Transformer Architecture 

In terms of fine-tuning, we froze the first two stages of the Swin Transformer to retain the learned features from the pre-

training. The weights from these initial layers were kept fixed to reduce the computational cost and prevent overfitting 

on the smaller dataset. The later stages (3 and 4) were unfrozen to allow for further fine-tuning on our specific task. 

 

Loss Function and Optimizer: 

The model was trained using CrossEntropyLoss, which is appropriate for multi-class classification tasks, where the 

network outputs a probability distribution over the two classes. The AdamW optimizer was used with weight decay 

regularization to optimize the model parameters. The learning rate was set to 1e-4, and weight decay was set to 1e-4 to 

prevent overfitting. 

To prevent the learning rate from decreasing too quickly, we employed the ReduceLROnPlateau scheduler, which 

reduces the learning rate by a factor of 0.5 if the validation loss does not improve after a set number of epochs. 

 

4.1.5 Training and Validation: 

The model was trained for 20 epochs, where during each epoch, the model's weights were updated based on the 

computed gradients. The training loop involved feeding the model with images in mini-batches, computing the loss 

using CrossEntropyLoss, performing backpropagation, and updating the model’s parameters using the optimizer. 

The performance was evaluated on the validation set after each epoch. The model's accuracy and loss were tracked 

during both training and validation. At the end of each epoch, the model's weights were saved if the validation accuracy 

improved compared to previous epochs, ensuring that the best performing model was retained. 

 

4.2 Segmentation Using CBAM-Enhanced U-Net++: 

The segmentation component of this project focuses on detecting bleeding areas in medical endoscopic images. To 

achieve this, we use an advanced neural network architecture called U-Net++ that is enhanced with CBAM 

(Convolutional Block Attention Module). This section provides a thorough explanation of the segmentation model 

architecture, the loss function, the dataset preparation, and the training process. 

 

4.2.1 Model Architecture: Attention U-Net++ 

The model used for segmentation is based on U-Net++, a variant of the classic U-Net architecture, which is widely used 

for image segmentation tasks. The U-Net++ model is specifically designed to enhance the segmentation performance 

through nested skip pathways that provide dense connections between encoder and decoder layers. These pathways 
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allow for more effective feature reuse and better gradient flow during training, which are crucial for precise 

segmentation in medical images. 

Incorporating CBAM (Convolutional Block Attention Module) into the U

performance by enabling the model to focus on relevant regions of the image. CBAM applies both channel attention 

and spatial attention, which help the model selectively highlight i

1. Channel Attention: Channel attention works by analyzing the feature maps produced by the network and adjusting 

the importance of each channel. It does this by calculating the average and maximum pooled ver

map and passing them through convolutional layers. The result is a set of attention weights that dynamically scale the 

feature maps, emphasizing more informative channels.

2. Spatial Attention: Spatial attention focuses on the spatia

image are important for the task at hand. This attention mechanism uses both average and maximum pooling to create 

an attention map that highlights important spatial areas (such as regions contai

concentrate on the most relevant areas, thereby improving segmentation accuracy.

By applying both channel and spatial attention in the decoder layers of U

bleeding regions of endoscopic images with higher accuracy.

 

Figure 4.2.1 Attention UNet++ Architecture

 

Loss Function: Combined Loss 

In segmentation tasks, especially in medical imaging, it is common to encounter class imbalance, where the foreground 

(e.g., bleeding regions) is much smaller than the background (e.g., non

combined loss function that incorporates both Dice Loss and Focal Loss.

1. Dice Loss: Dice Loss measures the overlap between the predicted segmenta

particularly well-suited for binary segmentation tasks where the goal is to distinguish between two classes (e.g., 

bleeding vs. non-bleeding). The loss value ranges from 0 to 1, with 1 indicating perfect overlap a

overlap. 

2. Focal Loss: Focal Loss is a modification of the standard cross

imbalance. It focuses more on hard-to-classify examples

loss for well-classified pixels. This encourages the model to focus on the difficult cases, which are often the ones most 

critical in medical image analysis. 

By combining these two losses, the model benefits from the accuracy

focusing Focal Loss, which together help the model achieve better segmentation performance in imbalanced datasets.

 

Dataset and Data Augmentation: 

The dataset for this project consists of endoscopic images along with their corresponding binary segmentation masks. 

Each image is labeled with pixel-wise annotations, where each pixel is marked as either part of the bleeding region or 

part of the non-bleeding region. These masks are used as the ground truth for training and evaluation.

To improve model generalization and prevent overfitting, we apply a series of data augmentation techniques using the 

Albumentations library. Data augmentation involves rando

during training, such as: 

• Horizontal flipping: Randomly flipping the image horizontally to simulate different perspectives.

• Rotation: Randomly rotating the image within a specified range to make the 
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allow for more effective feature reuse and better gradient flow during training, which are crucial for precise 

utional Block Attention Module) into the U-Net++ model further enhances its 

performance by enabling the model to focus on relevant regions of the image. CBAM applies both channel attention 

and spatial attention, which help the model selectively highlight important features and suppress irrelevant ones.

1. Channel Attention: Channel attention works by analyzing the feature maps produced by the network and adjusting 

the importance of each channel. It does this by calculating the average and maximum pooled ver

map and passing them through convolutional layers. The result is a set of attention weights that dynamically scale the 

feature maps, emphasizing more informative channels. 

2. Spatial Attention: Spatial attention focuses on the spatial location of the features, identifying which regions of the 

image are important for the task at hand. This attention mechanism uses both average and maximum pooling to create 

an attention map that highlights important spatial areas (such as regions containing bleeding). This helps the network 

concentrate on the most relevant areas, thereby improving segmentation accuracy. 

y applying both channel and spatial attention in the decoder layers of U-Net++, the model is better able to segment the 

ons of endoscopic images with higher accuracy. 

Figure 4.2.1 Attention UNet++ Architecture 

In segmentation tasks, especially in medical imaging, it is common to encounter class imbalance, where the foreground 

leeding regions) is much smaller than the background (e.g., non-bleeding regions). To address this, we use a 

combined loss function that incorporates both Dice Loss and Focal Loss. 

1. Dice Loss: Dice Loss measures the overlap between the predicted segmentation mask and the ground truth mask. It is 

suited for binary segmentation tasks where the goal is to distinguish between two classes (e.g., 

bleeding). The loss value ranges from 0 to 1, with 1 indicating perfect overlap a

2. Focal Loss: Focal Loss is a modification of the standard cross-entropy loss designed to address the issue of class 

classify examples (such as small or faint bleeding areas) by down

classified pixels. This encourages the model to focus on the difficult cases, which are often the ones most 

By combining these two losses, the model benefits from the accuracy-focused Dice Loss and the hard

focusing Focal Loss, which together help the model achieve better segmentation performance in imbalanced datasets.

The dataset for this project consists of endoscopic images along with their corresponding binary segmentation masks. 

wise annotations, where each pixel is marked as either part of the bleeding region or 

ding region. These masks are used as the ground truth for training and evaluation.

To improve model generalization and prevent overfitting, we apply a series of data augmentation techniques using the 

Albumentations library. Data augmentation involves randomly applying transformations to the images and masks 

• Horizontal flipping: Randomly flipping the image horizontally to simulate different perspectives. 

• Rotation: Randomly rotating the image within a specified range to make the model invariant to rotation.
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• Brightness and contrast adjustments: Randomly varying the brightness and contrast to simulate changes in lighting 

conditions. 

• Resizing: Standardizing the size of the images by resizing them to a fixed resolution (e.g., 256x256 pixels). 

These transformations help the model learn more robust features by exposing it to a variety of possible image 

variations, thereby improving its ability to generalize to unseen data. 

 

Training Process: 

The model is trained using the AdamW optimizer, which is a variant of the Adam optimizer with weight decay 

regularization. This optimizer is well-suited for training deep learning models as it adapts the learning rate based on the 

gradients of the loss function. 

In addition to the AdamW optimizer, we use mixed precision training to speed up the training process and reduce 

memory usage. Mixed precision training involves using both 16- bit and 32-bit floating-point operations to compute 

gradients, which significantly improves computational efficiency without sacrificing model accuracy. 

To further enhance the training process, we use a learning rate scheduler called ReduceLROnPlateau. This scheduler 

reduces the learning rate if the validation loss plateaus for a specified number of epochs, helping the model converge 

faster and avoid overfitting. 

During training, the model's performance is evaluated using two key metrics for segmentation: 

1. Dice Score: The Dice coefficient is used to measure the similarity between the predicted segmentation mask and the 

ground truth mask. A higher Dice score indicates better performance. 

2. IoU (Intersection over Union): IoU measures the overlap between the predicted and true segmentation regions. It is a 

widely used metric for evaluating segmentation performance, especially in tasks involving binary classification. 

The model is trained for a specified number of epochs, with the best performing model (the one with the lowest 

validation loss) saved for later use. The training loop involves feeding the images and masks through the network, 

computing the loss, and backpropagating the gradients to update the model's parameters. This process is repeated for 

several epochs until the model converges. 

 

Evaluation and Model Saving: 

After training, the model's performance is evaluated on a separate test set to assess its ability to generalize to new, 

unseen data. The best model (based on validation loss) is saved and can later be used for making predictions on new 

images. 

Image Classification 

1. Image Loading: The first step is to load the image that has been uploaded. This image is read and converted to the 

RGB color format to ensure it has three color channels. 

2. Preprocessing: Once the image is loaded, it undergoes preprocessing: 

o Resizing/Padding: The image is resized to a fixed size of 224x224 pixels, which is required by the classification 

model. If the aspect ratio of the image is not 1:1, padding is added to maintain the original proportions. 

o Normalization: The pixel values of the image are normalized to ensure they align with the expected range for the pre-

trained model (in this case, normalization typically centers the values around a mean and scales them based on standard 

deviation values that are specific to the pre-trained model). 

3. Model Inference (Classification): The preprocessed image is then passed through the classification model (a Swin 

Transformer). This model outputs two values (logits), representing the likelihood of the image belonging to each class 

(e.g., "Bleeding" and "Non-Bleeding"). 

o Prediction: The class with the highest likelihood is chosen as the predicted class. The image is then classified as either 

"Bleeding" or "Non-Bleeding." 

2. Image Segmentation (if Bleeding) 

If the classification step predicts the image as "Bleeding," the next step is to perform segmentation on the image to 

highlight the bleeding region. 



I J A R S C T    

    

 

               International Journal of Advanced Research in Science, Communication and Technology  

                               International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal 

Volume 5, Issue 7, April 2025 

 Copyright to IJARSCT         DOI: 10.48175/IJARSCT-25499  598 

    www.ijarsct.co.in  

 
 

ISSN: 2581-9429 Impact Factor: 7.67 

 
1. Letterbox Resizing: To process the image for segmentation, the image is resized while maintaining its aspect ratio, 

and padding is added to ensure that it fits the required size for the segmentation model. This ensures that the image 

dimensions are consistent while preserving the original proportions of the content in the image. 

2. Segmentation Model Inference: The padded image is then passed through the segmentation model (an Attention U-

Net++). This model generates a mask that highlights the regions of the image where bleeding is detected. 

o The model generates a probability map indicating the likelihood that each pixel in the image is part of the bleeding 

region. 

o A threshold is applied to convert these probabilities into a binary mask: pixels with a probability higher than the 

threshold are considered part of the bleeding region. 

3. Post-Processing: After the mask is generated, it is post-processed to remove any padding that was added during 

resizing. The mask is cropped to the region that corresponds to the original content of the image, and then resized back 

to the original image dimensions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.1 Proposed model workflow 

 

3. Visualization of Results 

Once the segmentation mask is generated, it can be overlaid on the original image to visualize the bleeding region: 

1. Overlay Creation: The segmentation mask is used to create a red-colored overlay that highlights the bleeding region. 

This red mask is combined with the original image, allowing the user to see the exact area where bleeding is detected. 
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2. Displaying Results: The original image, along with the segmentation overlay and the binary segmentation mask, can 

be displayed. If the image was classified as "Non- Bleeding," the segmentation step is skipped 

  

V. RESULTS 

5.1 Result of Classification task: 

The classification results demonstrate the effectiveness of different deep learning models in distinguishing between 

bleeding and non-bleeding images from the WCEBleedGen dataset. The Swin Transformer achieved the highest 

accuracy (99.43%) and F1-score (0.9943), indicating its superior feature extraction capabilities due to shifted window 

attention and hierarchical representation learning. ResNet50 followed closely with an accuracy of 99.02% and a perfect 

precision-recall balance, making it a robust alternative. DenseNet121 performed slightly lower (98.09% accuracy), but 

its recall (0.9771) suggests it effectively identifies positive cases while maintaining compact feature propagation. 

MobileViT achieved 97.33% accuracy, leveraging both CNN and ViT architectures, but its relatively lower recall 

(0.9580) indicates occasional false negatives. ViT Transformer, with the lowest accuracy (90.84%), struggled with 

generalization due to its reliance on patch-based tokenization without spatial inductive bias, leading to a trade-off 

between precision (0.8567) and recall (0.9809). Overall, Swin Transformer emerges as the best-performing model, 

demonstrating its suitability for medical image classification, particularly in endoscopic bleeding detection. 

 

5.1.1 Comparison of Classification results: 

Models Accuracy Precision Recall F1 Score 

Swin- Transformer 99.43% 0.9924 0.9962 0.9943 

Resnet50 99.02% 0.9962 0.9962 0.9962 

Densenet121 98.09% 0.9846 0.9771 0.9808 

Mobilevit 97.33% 0.9882 0.9580 0.9729 

Vit Transformer 90.84% 0.8567 0.9809 0.9146 

 

5.2 Result of Segmentation task: 

 The segmentation results highlight the performance of different models in accurately delineating bleeding regions in 

WCEBleedGen images. UNet++ achieved the highest Dice score (0.9750) and Intersection over Union (IoU = 0.8686), 

demonstrating its superior ability to capture fine-grained details by leveraging dense skip connections and an enhanced 

nested architecture. This indicates that UNet++ can effectively segment bleeding areas with minimal false positives and 

false negatives. In contrast, UNet exhibited significantly lower performance (Dice: 0.7023, IoU: 0.5478) due to its 

simpler architecture, which lacks the extensive feature refinement present in UNet++. DeepLabV3+, although designed 

for high- level semantic segmentation, underperformed (Dice: 0.6924, IoU: 0.5604), likely due to its reliance on dilated 

convolutions, which may not be optimal for fine-structured medical image segmentation. Overall, the results indicate 

that UNet++ is the most effective model for bleeding segmentation, making it well-suited for precise localization and 

quantification of bleeding regions in endoscopic images. 

 

5.2.1 Comparing of Segmentation results: 

Models Dice score IoU 

Unet++ with CBAM 0.9750 0.8686 

unet 0.7023 0.5478 

Deeplabv3+ 0.6924 0.5604 
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5.3 Output Screenshots  

Bleeding sample: 
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Non-bleeding sample: 

  

VI. CONCLUSION AND FUTURE SCOPE 

In this study, we proposed an advanced deep learning-based framework for automated bleeding detection and 

segmentation in Wireless Capsule Endoscopy (WCE) images. Our approach integrates Swin Transformer for 

classification and Attention U-Net++ with CBAM for segmentation, ensuring high accuracy and precise localization of 

bleeding regions. The WCEBleedGen dataset was utilized, with enhanced preprocessing techniques such as CLAHE-

based contrast adjustment and Gaussian blurring to improve image quality and feature extraction. Experimental results 

demonstrated the superior performance of Swin Transformer, achieving 99.43% accuracy in distinguishing bleeding 

from non-bleeding images, outperforming other models like ResNet50, DenseNet121, and ViT. Similarly, UNet++ with 

CBAM proved to be the most effective segmentation model, achieving a Dice score of 0.9750 and IoU of 0.8686, 

significantly outperforming traditional UNet and DeepLabV3+. The incorporation of CBAM and EfficientNet as the 

backbone further improved segmentation accuracy by refining feature selection. Our findings highlight the potential of 

deep learning in revolutionizing medical diagnostics by significantly reducing manual workload, enhancing diagnostic 

accuracy, and minimizing human error. The proposed AI-assisted system offers clear visualizations of bleeding regions, 

making it an invaluable tool for healthcare professionals in early detection and treatment planning of GI bleeding. For 

future work, we recommend expanding the dataset diversity, incorporating real- time processing capabilities, and 

exploring multi-modal approaches (e.g., combining WCE with clinical data) to further enhance system reliability and 

speed. With continuous advancements in AI-driven methodologies, automated GI diagnostics will become more 

efficient, accurate, and accessible, ultimately improving patient outcomes and advancing gastrointestinal healthcare. 
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