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Abstract: Air pollution remains one of the most critical environmental challenges faced by rapidly 

urbanizing regions across the globe. With increasing vehicular emissions, industrial activities, and 

population density, urban centers like Mumbai are witnessing a continuous decline in air quality, which 

poses significant threats to public health and environmental sustainability. Accurate forecasting of air 

quality is therefore essential for implementing timely mitigation strategies and policy measures. 

In this study, we propose a novel hybrid machine learning framework that integrates statistical time series 

forecasting (ARIMA) with ensemble learning (Random Forest Regression) to enhance the accuracy and 

reliability of air quality predictions. The model processes multi-dimensional spatio-temporal datasets 

consisting of key air pollutants such as PM2.5, PM10, NO₂, SO₂, CO, and O₃, collected from open-source 

platforms and IoT-enabled monitoring stations within the Mumbai Metropolitan Region. The proposed 

system incorporates data pre-processing techniques for noise reduction and missing value imputation, 

followed by feature engineering to extract temporal patterns and spatial influences. ARIMA effectively 

models the seasonal and linear trends in pollutant concentrations, while the Random Forest algorithm 

captures complex nonlinear relationships across various locations and environmental variables. Empirical 

results demonstrate that the hybrid model significantly outperforms standalone predictive methods in terms 

of Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R² score, indicating its robustness 

and applicability for real-world deployment.This research not only contributes a scalable solution for 

urban environmental monitoring but also supports governmental bodies and smart city initiatives in 

developing adaptive air quality management systems. Future enhancements may include the integration of 

deep learning architectures such as LSTM and the use of GIS-based dynamic visualization tools for 

interactive spatio-temporal air quality mapping. 
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I. INTRODUCTION 

The degradation of environmental quality, particularly in the form of rising air pollution, has emerged as a severe public 

health and ecological concern in urban areas globally. Rapid urbanization, unplanned industrialization, and increasing 

vehicular traffic have intensified air pollution levels, significantly impacting the air quality index (AQI) in megacities 

such as Mumbai. According to the World Health Organization (WHO, 2021), air pollution accounts for nearly 7 million 

premature deaths annually, with the majority occurring in low- and middle-income countries where urban air quality 

levels fall far below recommended standards. 

Air quality monitoring and forecasting are essential components of environmental governance. Conventional 

monitoring approaches are often manual, static, and limited in coverage, which makes it challenging to capture the 

dynamic behavior of pollutants in urban environments. Moreover, traditional statistical methods, while effective in 
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certain scenarios, often fall short when dealing with high-dimensional, non-linear, and temporally complex data 

structures that characterize real-time air quality datasets (Zhang et al., 2019). 

With the advent of smart cities and digital transformation in environmental monitoring, the use of data-driven 

predictive models has gained momentum. Machine learning (ML), a subset of artificial intelligence, offers powerful 

tools for analyzing large volumes of structured and unstructured environmental data. ML techniques have demonstrated 

high potential in learning complex patterns and providing accurate predictions, particularly when combined with time-

series forecasting models and spatial analytics (Kumar & Singh, 2022). 

This research proposes a hybrid framework that leverages the strengths of both statistical and machine learning models 

to enhance the accuracy of AQI prediction. Specifically, the Auto-Regressive Integrated Moving Average (ARIMA) 

model is employed to capture temporal trends, while the Random Forest algorithm is utilized to understand the spatial 

and non-linear associations among environmental variables. By integrating these models, we aim to build a more 

resilient and adaptive air quality prediction system tailored to the Mumbai Metropolitan Region. 

The novelty of this work lies in its dual focus on spatio-temporal modeling and its practical applicability in real-time 

decision-making. The study uses publicly available data from the Central Pollution Control Board (CPCB) and 

OpenAQ, along with simulated sensor data to ensure completeness and robustness. This framework aligns with 

sustainable development goals (SDGs) and supports evidence-based environmental planning and policy formulation. 

 

II. REVIEW OF LITERATURE 

Numerous studies over the past decade have explored the use of machine learning and statistical models for air quality 

monitoring. Each approach presents unique advantages and limitations, especially concerning data complexity, spatial 

granularity, and forecasting accuracy. Previous research has explored machine learning models for air quality 

prediction, including Linear Regression, Support Vector Machines, and Neural Networks. However, these models often 

neglect the influence of spatial factors and seasonal variations. Hybrid models that combine statistical forecasting with 

ensemble learning have shown promise but remain underexplored in urban Indian contexts. Our study bridges this gap 

using real-time data from sources like the Central Pollution Control Board (CPCB) and OpenAQ. 

Gupta and Shukla (2021) investigated the use of Support Vector Machines (SVM) for predicting AQI in Delhi and 

found that SVMs performed well for short-term forecasts but required extensive parameter tuning. Their work 

highlighted the need for models that balance accuracy with interpretability. 

Liu et al. (2020) developed a hybrid ARIMA–Random Forest model for predicting PM2.5 levels in Beijing. The results 

demonstrated that the hybrid model significantly outperformed standalone models in terms of RMSE and MAE. 

However, the study did not incorporate spatial data, limiting its applicability to localized prediction. 

Zhang et al. (2019) applied deep learning methods, including Long Short-Term Memory (LSTM) networks, for 

forecasting air pollution in China. While the LSTM model captured temporal dependencies effectively, the authors 

noted a lack of transparency in model decision-making, which is often critical in environmental policy scenarios. 

Kumar and Singh (2022) proposed a comparative evaluation of machine learning algorithms such as Random Forest, 

Gradient Boosting, and k-Nearest Neighbors for AQI prediction in Indian metropolitan cities. Their study emphasized 

the superior performance of ensemble learning models due to their ability to handle multicollinearity and noise in 

environmental datasets. 

Sahu et al. (2018) explored spatio-temporal modeling techniques and advocated for the integration of GIS and sensor-

based data streams to improve the resolution and accuracy of environmental forecasts. Their findings support the idea 

that combining geographic context with machine learning improves predictive outcomes. 

Despite the growing literature on ML-based air quality models, a majority of studies either focus on temporal modeling 

or overlook the significance of spatial heterogeneity. This gap underlines the need for a hybrid, multi-dimensional 

approach that considers both time and location factors, particularly in diverse and densely populated urban areas like 

Mumbai. 

The present study fills this research gap by proposing a model that not only captures temporal trends using ARIMA but 

also accommodates spatial variability and non-linear pollutant interactions through Random Forest Regression. This 

approach is positioned to serve as a benchmark for future research in urban environmental analytics. 
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III. MATERIALS AND METHODS 

3.1 Study Area and Scope: This research focuses on the Mumbai Metropolitan Region (MMR), one of India’s most 

densely populated and polluted urban zones. The city experiences high vehicular density, industrial emissions, and 

coastal climatic variations, making it a critical area for air quality monitoring. The study evaluates air pollutant data 

from multiple locations within the city to understand both temporal and spatial variations in air quality. 

3.2 Data Collection: The dataset utilized in this study was aggregated from multiple open-access and governmental 

platforms, ensuring diversity and authenticity of the data. The sources include: 

Central Pollution Control Board (CPCB): Real-time air quality data from regulatory stations. 

OpenAQ Platform: Open-source APIs offering pollutant-level measurements in CSV/JSON formats. 

IoT-enabled sensors (simulated data): Supplementary readings for spatial resolution. 

Pollutants Monitored: 

 PM2.5 (Fine Particulate Matter) 

 PM10 (Coarse Particulate Matter) 

 NO₂ (Nitrogen Dioxide) 

 SO₂ (Sulfur Dioxide) 

 CO (Carbon Monoxide) 

 O₃ (Ozone) 

 

Timeframe: January 2020 to December 2023 

Sampling Frequency: Hourly data aggregated into daily means 

 

Data Preprocessing 

Raw environmental data often contain missing values, outliers, and inconsistent units. The following preprocessing 

steps were applied: 

Missing Values: Filled using time-based linear interpolation. 

Outliers: Removed using Z-score thresholding (z > 3). 

Normalization: Feature scaling using Min-Max Normalization for uniform model input. 

Temporal Features: Extracted time-related variables (day, month, season). 

Spatial Encoding: Latitude and longitude values were used for geo-tagging monitoring stations. 

 

Model Framework 

This study proposes a hybrid predictive model combining ARIMA and Random Forest Regression: 

a. ARIMA (AutoRegressive Integrated Moving Average): Used for univariate time series forecasting, particularly 

effective in identifying seasonal and linear trends in pollutants like PM2.5 and NO₂. 

Optimal parameters (p, d, q) were selected using the AIC (Akaike Information Criterion) method. 

Decomposition of time series into trend, seasonality, and residual components. 

b. Random Forest Regression: An ensemble method that builds multiple decision trees and merges them for more 

accurate and stable predictions. 

Inputs include meteorological data (temperature, humidity), spatial location, and lagged pollutant values. 

Hyperparameter tuning was conducted using 5-fold cross-validation. 

c. Hybrid Integration Strategy: The outputs from ARIMA (forecast values) and Random Forest (regression results) were 

combined using weighted averaging: 

Hybrid AQIt=α⋅ARIMAt+(1−α)⋅RFt\text{Hybrid AQI}_{t} = \alpha \cdot \text{ARIMA}_{t} + (1 - \alpha) \cdot 

\text{RF}_{t}Hybrid AQIt=α⋅ARIMAt+(1−α)⋅RFt 

Where α\alphaα is the optimization parameter determined through grid search (optimal α = 0.4). 
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Evaluation Metrics 

To assess the performance of the models, the following metrics were applied: 

Mean Absolute Error (MAE) 

Root Mean Squared Error (RMSE) 

R-squared (R² Score) 

Mean Bias Error (MBE) 

 

IV. RESULTS AND DISCUSSION 

4.1 Performance Comparison: The predictive capabilities of three models; ARIMA, Random Forest (RF), and a 

hybrid ARIMA+RF model—were assessed using air quality data from the last six months of 2023. Performance metrics 

including Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R² Score were used to evaluate model 

accuracy. 

Model MAE RMSE R² Score 

ARIMA 8.32 10.55 0.78 

Random Forest 6.14 8.12 0.87 

Hybrid Model (ARIMA+RF) 4.98 6.45 0.92 

As depicted in Figure 1, the hybrid model outperformed the standalone models across all metrics. It achieved the lowest 

MAE and RMSE, indicating higher prediction accuracy and reduced error spread. Moreover, the highest R² Score 

(0.92) reflects superior explanatory power, especially in forecasting PM2.5 and NO₂ levels. 

4.2 Temporal Trends: Using ARIMA, clear seasonal patterns were detected in pollutant concentrations. PM2.5 levels 

peaked during post-monsoon and winter months, corroborating with meteorological conditions such as temperature 

inversion and reduced atmospheric dispersion. This seasonal behavior is vital for planning targeted interventions during 

high-risk periods. 

4.3 Spatial Variation: The Random Forest model captured significant spatial heterogeneity in pollutant distribution. 

Coastal regions like Colaba consistently exhibited lower PM2.5 and NO₂ levels, attributed to the cleansing effect of sea 

breezes. In contrast, industrial hubs such as Chembur and Kurla recorded persistently high AQI, likely due to emissions 

from refineries, vehicular traffic, and localized industrial activity. These insights are visually supported by the heatmap 

in Figure 2, demonstrating regional pollutant intensity across major monitoring stations. 

4.4 Visualization 

The visualization tools enhanced interpretability of the model's output: 

Figure 1 illustrates the comparative performance of ARIMA, RF, and Hybrid models in terms of MAE, RMSE, and R² 

Score. 

Figure 2 presents a spatial heatmap of PM2.5, NO₂, and SO₂ concentrations across urban regions. 

Figure 3 showcases a time-series plot comparing predicted vs actual AQI values over six months. The hybrid model 

aligned more closely with actual AQI fluctuations, particularly during abrupt pollution spikes such as festive seasons 

and winter smog episodes. 
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The detailed visual performance comparison of the models:

Mean Absolute Error (MAE): The Hybrid Model has the lowest error, indicating more accurate predictions.

Root Mean Square Error (RMSE): Similarly, the Hybrid Model performs best, reflecting lower average prediction 

deviation. 

R² Score: The Hybrid Model achieves the highest R² score, suggesting it explains the variability in AQI data more 

effectively. 

The spatial heatmap showing pollutant intensity (in µg/m³) across different urban regions:

Colaba, being coastal, shows lower levels of PM2.5, NO

Chembur and Kurla stand out with consistently higher pollution levels, reflecting industrial activity and traffic 

congestion. 
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The time-series line plot comparing predicted AQI values from ARIMA, Random Forest, and the Hybrid Model against 

actual AQI measurements from July to December 2023.

The Hybrid Model tracks the actual AQI more closely, especially during fluctuations.

ARIMA captures the general trend but lacks precision in short

Random Forest improves over ARIMA, particularly in abrupt changes, but still lags behind the Hybrid Model.

 

4.5 Real-World Application 

The hybrid model was deployed in a simulated real

ingestion and AQI prediction. The system exhibited 

as new data arrived. This underscores the potential for integration with 

pollution alerts, policy response, and public h

Table 1. Model Performance and Capability Comparison

Criterion ARIMA 

MAE 8.32 

RMSE 10.55 

R² Score 0.78 

Temporal Pattern 

Detection 
Strong (seasonality)

Spatial Variation 

Capture 
Weak 

Responsiveness to 

Sudden Spikes 
Moderate 

Interpretability High (parametric)

Computational 

Efficiency 
High 

Best Use Case Seasonal forecasting
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comparing predicted AQI values from ARIMA, Random Forest, and the Hybrid Model against 

y to December 2023. 

tracks the actual AQI more closely, especially during fluctuations. 

captures the general trend but lacks precision in short-term spikes. 

improves over ARIMA, particularly in abrupt changes, but still lags behind the Hybrid Model.

simulated real-time environment using Google Colaba, mimicking live data 

n. The system exhibited low latency and high adaptability, dynamically updating forecasts 

as new data arrived. This underscores the potential for integration with smart city infrastructure, enabling proactive 

pollution alerts, policy response, and public health advisory systems. 

Table 1. Model Performance and Capability Comparison 

Random Forest 
Hybrid Model 

(ARIMA + RF)

6.14 4.98 

8.12 6.45 

0.87 0.92 

Strong (seasonality) Weak 
Strong(via ARIMA 

integration)

Strong Strong 

High Very High

High (parametric) Moderate Moderate

Moderate Moderate

Seasonal forecasting Location-based prediction Real-time adaptive 

forecasting
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, mimicking live data 

and high adaptability, dynamically updating forecasts 

, enabling proactive 

Hybrid Model 

(ARIMA + RF) 

(via ARIMA 

integration) 

Very High 

Moderate–High 

Moderate 

time adaptive 

forecasting 
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Table 2. Regional Pollutant Concentration Snapshot (µg/m³) 

Region PM2.5 NO₂ SO₂ 

Colaba 42 28 15 

Kurla 88 67 22 

Chembur 93 72 25 

Andheri 65 49 18 

Borivali 58 45 17 

Thane 76 60 21 

Note: Higher concentrations in Kurla and Chembur align with industrial activity, while Colaba remains comparatively 

cleaner due to coastal winds. 

 

V. CONCLUSION AND FUTURE SCOPE 

5.1 Conclusion 

This study presents a robust hybrid machine learning framework that integrates the temporal forecasting capabilities of 

the ARIMA model with the spatial analytical strength of the Random Forest (RF) algorithm to predict urban air 

quality. The hybrid model demonstrated superior performance across all evaluation metrics, achieving a Mean 

Absolute Error (MAE) of 4.98, RMSE of 6.45, and an R² Score of 0.92. These results surpass those of the standalone 

ARIMA and RF models, highlighting the synergy achieved by combining statistical and machine learning approaches. 

Temporal trend analysis revealed a consistent seasonal rise in PM2.5 concentrations during post-monsoon and 

winter months, corresponding with reduced atmospheric dispersion. Spatial analysis, on the other hand, showcased 

significant intra-urban variation, with industrial zones like Chembur and Kurla exhibiting persistently elevated 

pollutant levels, while coastal areas such as Colaba showed lower concentrations due to better ventilation from sea 

breezes. 

The model was successfully deployed in a simulated real-time environment, demonstrating low-latency predictions 

and high adaptability. This confirms its potential for integration into smart city infrastructure—enabling proactive 

air quality monitoring, health risk forecasting, and dynamic public health alert systems. 

Overall, the proposed hybrid model not only provides accurate AQI forecasting but also supports localized decision-

making for environmental policymakers, urban planners, and public health officials. 

 

5.2 Future Scope 

While the results are promising, there remain avenues for future exploration and enhancement: 

 Incorporation of Meteorological and Satellite Data: Future models can be improved by integrating high-

resolution satellite imagery (e.g., MODIS, Sentinel-5P) and real-time meteorological parameters (e.g., wind 

speed, humidity, solar radiation) to further refine spatial predictions and detect transboundary pollution. 

 Deep Learning Integration: Advanced deep learning architectures such as LSTM (Long Short-Term 

Memory), GRU (Gated Recurrent Units), and CNN-LSTM hybrids can be explored to capture long-term 

dependencies and spatio-temporal features more effectively. 

 Multi-Pollutant and Health Impact Modeling: Expanding the model to predict combined pollutant indices 

and correlating AQI trends with hospital admission data or respiratory illness rates could significantly 

enhance its public health relevance. 

 Edge AI and IoT Deployment: Embedding the model into edge devices and low-cost IoT sensors deployed 

in urban neighborhoods can enable hyper-local real-time AQI prediction, reducing dependency on 

centralized systems. 

 Policy Simulation and What-If Analysis: The system can be extended to simulate the impact of policy 

interventions (e.g., odd-even vehicle schemes, factory shutdowns) on urban air quality, helping decision-

makers assess outcomes before implementation. 
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 Cross-City and Cross-Country Validation: Applying and validating this hybrid model across multiple cities 

and geographical contexts will help establish its generalizability and robustness across different urban 

ecosystems. 
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