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Abstract: One of the essential and tedious task in agricultural practices detecting of disease on crops. It 

requires huge time as well as skilled labour. This paper proposes a smart and efficient technique for the 

detection of crop disease which uses machine learning techniques. Every year India loses a significant 

amount of annual crop yield due to unidentified plant diseases. The traditional method of disease detection 

is manual examination by either farmers or experts, which may be time-consuming and inaccurate. It is 

proving infeasible for many small and medium-sized farms around the world. To mitigate this issue, a 

computer aided disease recognition model is proposed. It uses leaf image classification with the help of 

deep convolutional networks. In this paper, CNN was proposed to detect plant disease. It has three 

processing steps namely feature extraction, downsizing image, and classification. In CNN, the 

convolutional layer extracts the feature from the plant image. It helps to give personalized 

recommendations to the farmers based on soil features, temperature, and humidity. 
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I. INTRODUCTION 

Agriculture is a crucial sector for global food security, but it faces numerous challenges, including crop diseases that 

lead to significant losses in yield and quality. Early and accurate detection of these diseases is vital for effective 

management and mitigation. Traditional methods of disease detection, which rely on manual inspection and expertise, 

are often time-consuming, labor-intensive, and prone to error, especially in large-scale farming.Recent advances in 

machine learning, particularly in the domain of image processing, offer promising solutions to this problem. 

Convolutional Neural Networks (CNNs), a class of deep learning models, have demonstrated superior performance in 

analyzing and classifying complex patterns in images. In the context of crop disease detection, CNNs can be trained to 

recognize visual symptoms of various plant diseases from leaf images with high accuracy. By automating this process, 

CNNs not only improve the speed and precision of disease identification but also enable scalable monitoring systems 

for large farms. 

This paper explores the application of CNNs for detecting crop diseases, focusing on developing and optimizing models 

to achieve reliable and efficient disease identification. The research aims to contribute to the growing body of 

knowledge on using artificial intelligence in agriculture, offering solutions that can help farmers minimize losses and 

improve crop management practices. 

CNNs are particularly well-suited for crop disease detection as they can automatically learn discriminative features 

from images of infected plant parts, such as leaves. Unlike traditional machine learning models that require manual 

feature extraction, CNNs operate end-to-end, learning to classify diseases directly from raw image data. This allows 

them to detect even subtle differences in disease symptoms, leading to highly accurate classifications. By leveraging 

large datasets of annotated plant disease images, CNN models can be trained to recognize a wide range of diseases, 

making them a valuable tool for real-time, automated disease monitoring in agriculture. 

Several studies have demonstrated the efficacy of CNNs in crop disease detection, achieving high accuracy in 

recognizing diseases in crops such as wheat, rice, maize, and tomato. However, challenges remain in improving model 

generalization across diverse environmental conditions and in addressing issues related to data scarcity in 
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underrepresented crops. This research paper seeks to address these challenges by developing and refining CNN models 

to enhance their robustness and adaptability to various real-world scenarios. Additionally, the paper explores the 

potential of transfer learning and data augmentation techniques to mitigate the impact of limited datasets and further 

improve detection accuracy. 

 

II. LITERATURE REVIEW 

The application of Convolutional Neural Networks (CNNs) in crop disease detection has been an area of growing 

interest within both the agricultural and computer vision communities. The primary motivation behind this research is 

the need for automated, accurate, and scalable solutions to combat the growing threat of plant diseases, which account 

for significant losses in global crop yields. In this section, we review the state-of-the-art studies and approaches in crop 

disease detection using deep learning techniques, particularly CNNs. 

 

2.1Traditional Approaches in Crop Disease Detection 

Before the advent of deep learning, traditional methods for crop disease detection relied heavily on manual inspection 

by farmers or experts. These manual approaches were time-consuming and required significant domain expertise. Other 

conventional methods involved machine learning techniques such as Support Vector Machines (SVM), k-nearest 

Neighbours(k-NN), and Decision Trees, which required manual feature extraction from images. However, the 

performance of these models was limited by the quality of the features extracted and their inability to generalize across 

various conditions, such as changes in lighting, background, and crop varieties. 

 

2.2 Deep Learning in Agriculture 

With the rise of deep learning, particularly CNNs, significant advancements have been made in image classification 

tasks, including plant disease identification. Sladojevic et al. pioneered the use of CNNs for crop disease detection, 

developing a model capable of recognizing 13 different types of plant diseases from leaf images with an accuracy of 

96.3%. Their study highlighted the potential of CNNs to automatically extract complex features from raw images, 

eliminating the need for manual feature engineering. However, the study's limitation was its small dataset, which could 

affect the generalizability of the model in real-world scenarios. 

Similarly, Mohanty et al. used a deep CNN architecture trained on the Plant Village dataset, achieving an overall 

accuracy of 99.35% in classifying 38 different crop diseases across 14 crop species. The use of large, publicly available 

datasets such as PlantVillage has been instrumental in the training of deep learning models, but challenges remain 

regarding the deployment of these models in real-world agricultural settings. Specifically, Mohanty's study used images 

taken under controlled conditions with uniform backgrounds, which do not represent the variability encountered in 

actual field environments. 

 

2.3 CNN Architectures for Crop Disease Detection 

Various CNN architectures have been explored for crop disease detection, each offering trade-offs between accuracy 

and computational efficiency. Ferentinos (2018) conducted a comparative study of CNN architectures, including 

AlexNet, VGG16, and GoogLeNet, for plant disease classification. His study demonstrated that deeper architectures 

such as VGG16 and GoogLeNet provide higher accuracy but require more computational resources. On the other hand, 

shallower models like AlexNet, while faster to train, showed lower accuracy, especially for datasets with significant 

intra-class variability. 

A more recent trend is the use of transfer learning, where pre-trained models are fine-tuned on crop disease datasets. 

Sibiya and Sumbwanyambe demonstrated the effectiveness of transfer learning by using ResNet-50, a deep residual 

network pre-trained on ImageNet, for maize leaf disease classification. The model achieved high accuracy while 

significantly reducing training time, making it a practical solution for real-world applications. Transfer learning is 

particularly useful when working with limited datasets, as the model leverages pre-learned features from large-scale 

image datasets. 
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2.4 Challenges and Limitations  

Despite the promising results, several challenges remain in deploying 

applications. One major issue is the data dependency

while CNN models perform exceptionally well on curated datasets, their performance can degrade significantly when 

tested on images taken in the field under varying lighting, ang

researchers have started exploring data augmentation tec

and enhance the robustness of CNN models

Another significant challenge is the real

computational resources may be limited, a

devices such as smartphones or drones. 

deployment, achieving a good balance between accuracy and inference time, bu

across a wide range of conditions remains. 

 

2.5 Emerging Trends 

Recent studies are also exploring the integration of 

improve disease detection accuracy. For instance, 

environmental sensor data to enhance the detection of disease outbreaks by factoring in weather conditio

health, and other environmental parameters

disease detection systems by incorporating complementary data sources.

 

2.5 Summary of Findings 

While CNNs have proven to be highly 

generalizability and practical application in the field. The review of 

CNNs in controlled environments, but more research is needed to ensure robustness under real

Additionally, the development of lightweight architectures, the use of transfer learning, and multi

emerging as critical areas for future research.
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data dependency of CNN models. Studies such as Abade et al.

ceptionally well on curated datasets, their performance can degrade significantly when 

tested on images taken in the field under varying lighting, angles, and occlusions. To address these challenges, 

data augmentation techniques to increase the diversity of training data artificially 

the robustness of CNN models. 

real-time application of these models. In real-world farming scenarios, 

computational resources may be limited, and there is a need for lightweight CNN architectures that can run on edge 

devices such as smartphones or drones. Zeng et al. developed a lightweight CNN model optimized for mobile 

deployment, achieving a good balance between accuracy and inference time, but the challenge of maintaining accuracy 

 

Recent studies are also exploring the integration of CNNs with other machine-learning and sensor-

improve disease detection accuracy. For instance, Xu et al. proposed a multi-modal approach combining 

to enhance the detection of disease outbreaks by factoring in weather conditio

er environmental parameters. This multi-modal approach shows promise in improving the robustness of 

disease detection systems by incorporating complementary data sources. 

have proven to be highly effective for crop disease detection, there are still limitations to their 

generalizability and practical application in the field. The review of the literature indicates a strong performance of 

in controlled environments, but more research is needed to ensure robustness under real

Additionally, the development of lightweight architectures, the use of transfer learning, and multi-modal approaches are 

or future research. 
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System Architecture for Crop Disease Detection Using CNN: The Crop Disease Detection System follows a 

structured pipeline to identify diseases in plant leaves using Convolutional Neural Networks (CNN). The system 

consists of multiple modules, each performing a specific function in processing the image and determining whether the 

crop leaf is healthy or infected. The main components of the system are described below: 

User Interaction: The system begins with the user, who interacts with the application through a user interface. The 

user captures or uploads an image of a crop leaf to be analyzed for potential diseases. 

 

B. Image Acquisition: The interface allows users to : 

 Upload an existing image from their gallery. 

 Once the image is acquired, it is forwarded to the next processing stage. 

 

C. Image Processing: In this stage, image pre-processing techniques are applied to enhance the quality of the image 

and make it suitable for analysis. This may include: 

 Resizing the image to a standard dimension. 

 Noise reduction using filters. 

 Contrast enhancement to highlight disease symptoms. 

 Segmentation to isolate the leaf from the background. 

 

D. Feature Extraction Using CNN: After preprocessing, the image is passed through a Convolutional Neural Network 

(CNN), which extracts key features. The CNN consists of multiple layers, including: 

Convolutional Layers for feature extraction. 

Pooling Layers for dimensionality reduction. 

Fully Connected Layers for classification. 

CNN processes the image and learns patterns associated with healthy and diseased leaves. 

 

F. Disease Detection: Based on the extracted features, the system determines whether the leaf is healthy or defective 

(infected with disease). A classification algorithm within the CNN model assigns a label to the image. 

If the leaf is healthy, the process terminates with a confirmation to the user. 

If the leaf is defective , the system proceeds to the next step. 

 

G. Recommendation System: For diseased leaves, the system generates recommendations based on the detected 

disease. These recommendations may include: 

Possible disease name and severity. 

Suggested treatments (e.g., pesticides, organic solutions). 

Best farming practices to prevent disease spread. 

 

IV. DATASET 

4.1 Data Collection 

The dataset used for this study comprises images of diseased and healthy crops across multiple species. The images 

were collected from publicly available datasets as well as custom datasets sourced through field collection and online 

agricultural repositories. A large portion of the dataset was derived from the New Plant Diseases Dataset.This dataset 

is recreated using offline augmentation from the original dataset. The original dataset can be found on this GitHub repo. 

This dataset consists of about 87,377 RGB images of healthy and diseased crop leaves which are categorized into 38 

different classes. The total dataset is divided into an 80/20 ratio of training and validation set preserving the directory 

structure. A new directory containing 33 test images is created later for prediction purposes. 
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4.2 Public or Proprietary Dataset 

The New Plant Diseases Dataset served as the primary source of images. This publicly available dataset provides well-

labeled, high-quality images under controlled conditions. The custom dataset, created for this study, includes field-

captured images, allowing the model to generalize better to real-world conditions. Together, these datasets ensure a 

comprehensive variety of disease symptoms, crop species, and image conditions. 

 

4.3. Data Pre-processing 

Before training the CNN model, several data pre-processing steps were applied to standardize the input images and 

prepare the dataset for effective learning: 

 Image Resizing: All images were resized to a uniform resolution of 128x128 pixelsto ensure compatibility 

with the CNN architecture. 

 Normalization: Pixel values of the images were normalized to a range of [0,1] by dividing by 127. This 

normalization helps in faster convergence during training by ensuring uniform scaling across the dataset. 

 Class Imbalance Handling: In the initial dataset, certain diseases had significantly more images than others, 

leading to class imbalance. To address this, undersampling was applied to the majority classes, and 

oversamplingwas performed for minority classes using data augmentation techniques. 

 Image Labelling: Each image was labeled according to the type of crop and the specific disease class or 

marked as "healthy" for disease-free plants. 

 

4.4 Data Augmentation 

To enhance the diversity of the training dataset and prevent overfitting, several data augmentation techniques were 

employed: 

 Rotation: Images were randomly rotated within a range of ±30 degrees to simulate different orientations in 

which the leaves may appear in real-world conditions. 

 Horizontal and Vertical Flipping: Images were flipped horizontally and vertically to increase the dataset’s 

diversity and make the model invariant to the orientation of the leaves. 

 Zooming and Cropping: Random zoom and crop operations were applied to simulate varying distances 

between the camera and the plant. This was especially important for ensuring the model’s robustness to 

different levels of magnification. 

 

V. METHODOLOGY 

5.1 Proposed CNN Architecture 

 The proposed CNN architecture for crop disease detection consists of multiple layers designed to effectively 

extract and learn features from leaf images. The network architecture is structured as follows: 

 

5.1.1 Input Layer 

 Input Shape: 128×128×3 (RGB images resized to 128×128 pixels) 

 Normalization: Pixel values scaled to [0,1] 

 

5.1.2 Feature Extraction Layers 

First Convolutional Block 

 Convolutional Layer: 32 filters, 3×3 kernel, ReLU activation 

 Batch Normalization 

 Max Pooling: 2×2 pool size, stride 2 

 Dropout: 0.25 
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Second Convolutional Block 

 Convolutional Layer: 64 filters, 3×3 kernel, ReLU activation 

 Batch Normalization 

 Max Pooling: 2×2 pool size, stride 2 

 Dropout: 0.25 

 

Third Convolutional Block 

 Convolutional Layer: 128 filters, 3×3 kernel, ReLU activation 

 Batch Normalization 

 Max Pooling: 2×2 pool size, stride 2 

 Dropout: 0.25 

 

Fourth Convolutional Block 

 Convolutional Layer: 256 filters, 3×3 kernel, ReLU activation 

 Batch Normalization 

 Max Pooling: 2×2 pool size, stride 2 

 Dropout: 0.25 

 

Fifth Convolutional Block 

 Convolutional Layer: 512 filters, 3×3 kernel, ReLU activation 

 Batch Normalization 

 Max Pooling: 2×2 pool size, stride 2 

 Dropout: 0.25 

 

5.1.3 Classification Layers 

 Flatten Layer 

 Fully Connected Layer: 1024 neurons, ReLU activation 

 Dropout: 0.4 

 Output Layer: 38 neurons (corresponding to the 38 disease classes), Softmax activation 

 

5.2 Training Procedure 

5.2.1 Model Training 

The CNN model was trained using the following parameters and techniques: 

 Loss Function: Categorical Cross-Entropy 

 Optimizer: Adam with an initial learning rate of 0.0001 

 Batch Size: 32 

 Epochs: 10 with early stopping 

 Learning Rate Schedule: Reduced on plateau (factor=0.2, patience=5) 

 Training-Validation Split: 80%-20% 

 Hardware: NVIDIA GTX 8GB RAM 

 Framework: TensorFlow 2.6 with Keras API 

 

5.2.2 Transfer Learning 

 To improve model performance and reduce training time, we implemented transfer learning using the pre-

trained model: 

 The model pre-trained on ImageNet was loaded without the top classification layer 
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The base model weights were frozen during the initial training phases 

 Custom classification layers were added on top:  

 Global Average Pooling 

 Dropout (0.4) 

 Dense layer (1024 neurons, ReLU activation) 

 Output layer (38 neurons, Softmax activation) 

 Fine-tuning was performed by unfreezing the top layers of the base model after initial training 

 

5.2.3 Data Augmentation Implementation 

 During training, on-the-fly data augmentation was applied with the following parameters: 

 Rotation: Random rotation within ±30 degrees 

 Width/Height Shift: Random shifts up to 20% of image dimensions 

 Horizontal/Vertical Flip: Random flipping with a 50% probability 

 Zoom Range: Random zoom between 80%-120% 

 Brightness Adjustment: Random brightness shifts within ±20% 

 

5.2.4 Regularization Techniques 

To prevent overfitting and improve model generalization: 

 Dropout layers were added after each convolutional block (0.25) and before the output layer (0.4) 

 L2 regularization (weight decay) was applied to convolutional and dense layers 

 Early stopping was implemented with patience of 10 epochs monitoring validation loss 

 

5.3 Evaluation Metrics 

The performance of the proposed CNN model was evaluated using the following metrics: 

 Accuracy: Proportion of correctly classified images 

 Precision: True positives / (True positives + False positives) 

 Recall: True positives / (True positives + False negatives) 

 F1-Score: 2 × (Precision × Recall) / (Precision + Recall) 

 Confusion Matrix: Visualization of classification results across all classes 

 

5.4 Model Deployment and Implementation 

5.4.1 Model Optimization 

For deployment on resource-constrained devices: 

 Model pruning: Removing redundant connections while maintaining accuracy 

 Quantization: Converting 32-bit floating-point weights to 8-bit integers 

 Model compression: Using TensorFlow conversion 

 

5.4.2 Application Development 

 The trained model was integrated into a user-friendly application with the following features: 

 Intuitive UI for image capture/upload 

 Real-time disease detection 

 Personalized treatment recommendations based on detected disease 

 Offline functionality for use in areas with limited connectivity 

 Environmental data integration (temperature and humidity) to enhance recommendation accuracy 
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5.4.3 Recommendation System Implementation 

The recommendation system utilizes: 

 A knowledge base of established treatments for each detected disease 

 Environmental data analysis to customize recommendations based on local conditions 

 Severity estimation based on the extent of visual symptoms 

 Treatment options categorized by organic, chemical, and integrated pest management approaches 

 

Diseased Crop’s in Training Dataset : 

Apple Scab   

Fig.4.ashows the leaf of an apple tree with apple scab disease. We can see that the leaves have brown spots/marks. A 

scab is often caused by a fungus that infects the leaves and thefruits, which makes the fruit unhealthy for eating. In our 

dataset, about 32.5% of images are of apple scab.  

 

Cedar Apple Rust   

Fig.4.b  shows the leaf of an apple tree having cedar apple rust. We can see that the leaves have dense yellowish marks. 

Rust is often caused in plants via a unique fungus named ‘rust fungus’.In our dataset, about 34.2% of images are of 

cedar apple rust.  

 

 

 

 

 

 

 

 

 

 

Fig.4.a Leaf with apple scab.                                    Fig.4.b  Leaf with cedar apple rust. 

 

Implementation 

5.1.Convolutional Layers in the Model 

The proposed model utilizes Convolutional Neural Networks (CNNs) to automatically extract features from crop 

images. The architecture consists of multiple convolutional layers, each followed by activation functions and pooling 

layers to progressively reduce spatial dimensions while retaining essential features. The layers are structured as follows: 

Conv Layer 1: 32 filters of size 3x3, ReLU activation 

Pooling Layer 1: Max pooling (2x2) 

Conv Layer 2: 64 filters of size 3x3, ReLU activation 

Pooling Layer 2: Max pooling (2x2) 

Conv Layer 3: 128 filters of size 3x3, ReLU activation 

Pooling Layer 3: Max pooling (2x2) 

Conv Layer 4: 256 filters of size 3x3, ReLU activation 

Pooling Layer 4: Max pooling (2x2) 

Conv Layer 5: 512 filters of size 3x3, ReLU activation 

Pooling Layer 5: Max pooling (2x2) 

Fully Connected Layers: Flattened layer followed by two dense layers with 1024 and 38 neurons, 

respectively. 

Output Layer: A Softmax layer to classify images into different crop disease categories. 
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5.2 Training and Testing Validation 

The dataset used for training and testing consists of labeled images of healthy and diseased crops. The dataset is 

preprocessed through normalization and data augmentation techniques such as rotation, flipping, and zooming to 

improve generalization. The dataset is split into:  

 Training Set: 70,295 images, used for model learning. 

 Validation Set: 70% of the training data, is used to tune hyperparameters. 

 Testing Set: 17,082 images, used to evaluate the model’s performance. 

The model is trained using the Adam optimizer with a learning rate of 0.001 and categorical cross-entropy as the loss 

function. The training process is monitored through validation loss and accuracy metrics to prevent overfitting. 

 
Fig 5.1.a Convolutional Layers in the Model 

 

5.3 Accuracy and Data Loss Tracking 

To assess the model’s performance, accuracy and data loss are tracked during training and evaluation. The results 

indicate that: 

 The model achieves an overall accuracy of 95% on training validation and 55% on testing validation sets. 

 The training loss steadily decreases, indicating effective learning. 

 The validation loss is monitored to prevent overfitting; early stopping is implemented if the loss increases over 

multiple epochs. 
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Fig.5.3 an Accuracy and Data Loss Tracking 

 

5.4 Precision and Recall Evaluation 

Precision and recall metrics are used to measure the effectiveness of the model in identifying crop diseases accurately.  

A confusion matrix is generated to analyze misclassifications and identify areas for 

improvement. The model demonstrates high 

recall for severe diseases, ensuring that affected crops are detected with minimal false negatives. 

By leveraging CNNs, the proposed model 

provides a robust and automated approach to crop disease detection, improving accuracy and aiding early intervention 

for farmers. 

 

 
Fig.5.4 a Precision, Recall and Accuracy 

 

VI. FUTURE WORK 

While the results obtained from our CNN-based approach for crop disease detection are promising, there are several 

areas where further research and improvements can be made. Future work will focus on the following aspects: 
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Integration with Real-Time Systems 

One potential avenue for future research is the integration of the proposed model into real-time systems for practical 

field deployment. This would involve developing lightweight CNN architectures or optimizing existing models to run 

efficiently on mobile devices, drones, or edge computing systems. Such a system would allow farmers to use 

smartphones or unmanned aerial vehicles (UAVs) to detect crop diseases on-site, providing rapid diagnosis and 

reducing response time to disease outbreaks. 

 

Expanding the Dataset for Real-world Conditions 

Although the current dataset includes a mix of controlled and field-collected images, there is a need to further enhance 

the model’s robustness by increasing the diversity of the dataset. Future work should focus on collecting more images 

under varied environmental conditions (e.g., different lighting, occlusions, and weather scenarios). Additionally, 

capturing multispectral or hyperspectral images, which provide additional information not visible in RGB images, 

could further improve detection accuracy. 

 

Multi-Disease Detection and Severity Estimation 

Another area for exploration is the extension of the model to handle multiple simultaneous diseases and to estimate 

the severity of disease progression. Currently, the model is designed for single-disease classification, but crops in real-

world scenarios are often affected by more than one disease at a time. Implementing a multi-label classification model 

could allow for the detection of multiple diseases on the same leaf. Moreover, disease severity estimation could help 

prioritize treatment strategies based on how advanced a disease is. 

 

Incorporation of Sensor Data and Multi-Modal Learning 

Future work can also explore the integration of sensor data (such as temperature, humidity, and soil moisture levels) 

with image-based CNN models to build a more comprehensive plant health monitoring system. Combining these data 

types through multi-modal learning could enhance the predictive power of the model by incorporating environmental 

factors that influence disease development. 

 

Model Interpretability and Explainability 

One of the key challenges in deploying CNN models in practical agricultural settings is their lack of interpretability. 

Farmers and agronomists may be hesitant to trust black-box models. Future work should focus on improving the 

interpretability of CNN models using techniques such as Class Activation Mapping (CAM) or Grad-CAM, which 

highlight the regions of the image that are most important for the model's predictions. This would allow users to better 

understand how the model is making decisions, increasing its usability in the field. 

 

Adaptation to Other Crops and Global Expansion 

The current model is focused on a limited number of crop species and diseases. Future research should aim to expand 

the model to cover more crops and diseases, especially for regions with high agricultural diversity. In addition, 

adapting the model for global use, where it can handle crop diseases across different geographies and climates, would 

make the system more universally applicable. 

 

VII. CONCLUSION 

In this paper, we presented a Convolutional Neural Network (CNN)-based approach for the detection and classification 

of crop diseases from leaf images. The proposed method demonstrated high accuracy in identifying various plant 

diseases. By leveraging publicly available datasets, such as the New Plant Dataset, along with custom field-captured 

images, the model was trained to handle both controlled and real-world conditions. 

The results show that CNNs are highly effective for image-based disease detection, particularly when coupled with data 

augmentation techniques to increase dataset diversity. Our model achieved strong classification performance, which can 

be further enhanced through the use of advanced preprocessing, regularization techniques. These findings indicate that 
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deep learning methods, specifically CNNs, can play a significant role in automating crop disease detection, offering a 

scalable solution for real-time agricultural applications. 

Despite these promising results, challenges remain in terms of generalizing the model to diverse field conditions, 

handling multiple diseases simultaneously, and deploying the system in real-time, resource-constrained environments. 

Future research will focus on overcoming these limitations by integrating real-time processing, incorporating sensor 

data, and expanding the dataset to cover a wider range of crops and diseases under various environmental conditions. 

In conclusion, the adoption of CNNs for crop disease detection holds great potential for transforming traditional 

agricultural practices by providing accurate, efficient, and scalable solutions to combat plant diseases, ultimately 

improving crop yield and food security. 
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