
I J A R S C T    

    

 

               International Journal of Advanced Research in Science, Communication and Technology  

                               International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal 

Volume 5, Issue 9, March 2025 

 Copyright to IJARSCT         DOI: 10.48175/568   620 

    www.ijarsct.co.in  

 
 

ISSN: 2581-9429 Impact Factor: 7.67 

 

A Systematic Review on the Use of Fractional 

Order Partial Differential Equations in Biological 

and Medical Modeling 
Vishal Rajput1 and Dr. Ashwini Kumar2 
1Research Scholar, Department of Mathematics    
2Research Guide, Department of Mathematics 

Sunrise University, Alwar, Rajasthan, India 

 

Abstract: Fractional order partial differential equations (FPDEs) have emerged as powerful 

mathematical tools in modeling complex phenomena in biological and medical systems. Unlike classical 

integer-order models, FPDEs capture memory effects, anomalous diffusion, and non-local interactions, 

which are prevalent in biological tissues, disease propagation, and drug transport mechanisms. This 

review systematically examines the recent developments, applications, and computational methods 

associated with FPDEs in biomedical contexts, emphasizing their role in accurately describing real-

world biological processes 
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I. INTRODUCTION 

Biological and medical systems are inherently complex, often characterized by non-local interactions, heterogeneity, 

and memory-dependent behavior. Classical partial differential equations (PDEs) are limited in capturing such properties 

due to their local and integer-order nature. In contrast, fractional order partial differential equations (FPDEs) generalize 

classical models by allowing derivatives of non-integer order, providing enhanced flexibility in representing memory 

and spatial heterogeneity. 

Biological and medical systems are inherently complex, exhibiting non-local interactions, heterogeneity, and memory-

dependent behavior that cannot always be accurately described using classical integer-order models. Traditional partial 

differential equations (PDEs) have long been used to represent processes such as diffusion, reaction kinetics, and 

transport phenomena. However, these models often fail to capture the anomalous dynamics observed in real biological 

systems, such as sub diffusion in crowded cellular environments, heterogeneous tumor growth, irregular drug transport 

in tissues, and the complex spatiotemporal spread of diseases. 

Fractional order partial differential equations (FPDEs) offer a more generalized mathematical framework by 

incorporating derivatives of non-integer order in time and space, enabling the modeling of processes with memory 

effects and long-range spatial correlations. The key advantage of FPDEs lies in their ability to bridge the gap between 

purely local models and the observed non-local and history-dependent dynamics in biological systems. Mathematically, 

FPDEs can be expressed as  where α and β represent the fractional orders in 

time and space, D denotes the diffusion coefficient, and f(u,x,t) represents reaction or source terms.  

This formulation allows the description of sub diffusive or super diffusive transport phenomena, reaction-diffusion 

dynamics, and processes with memory effects, which are prevalent in physiological and pathological contexts. Over the 

past two decades, FPDEs have been increasingly applied to model drug delivery mechanisms, capturing the complex 

pharmacokinetics of drugs in heterogeneous tissues and porous organs, where classical diffusion equations are 

insufficient. Similarly, tumor growth models based on fractional reaction-diffusion equations have demonstrated 

improved accuracy in predicting invasion fronts and tumor heterogeneity by accounting for non-local cell migration and 

proliferation dynamics.  
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In epidemiology, fractional models of infectious disease spread incorporate memory effects and anomalous mobility 

patterns, allowing better representation of incubation periods, long-distance contacts, and spatial heterogeneity in 

populations. Computational approaches play a crucial role in implementing FPDEs in biomedical applications, as 

analytical solutions are often unavailable. Numerical methods, including finite difference, finite element, and spectral 

approaches, along with efficient discretization techniques for Caputo and Riemann-Liouville derivatives, have been 

developed to simulate high-dimensional fractional models. Despite these advances, challenges remain, particularly in 

parameter estimation, model validation against experimental data, and computational efficiency for large-scale 

simulations.  

This systematic review aims to provide a comprehensive overview of the current applications of FPDEs in biological 

and medical modeling, summarizing their mathematical formulations, computational strategies, advantages over 

classical models, and practical implications for understanding complex physiological, pathological, and epidemiological 

processes. By highlighting the state-of-the-art research, this review seeks to demonstrate the potential of FPDEs as a 

robust tool for predictive and personalized medicine, as well as to identify gaps and future directions for further 

development in this rapidly evolving field. 

Mathematically, a general time-space FPDE can be written as: 

 

where  represent fractional derivatives in time and space, respectively, DDD is the diffusion coefficient, 

and f(u,x,t) denotes reaction or source terms. This formulation allows modeling of anomalous diffusion and 

subdiffusive behaviors commonly observed in biological media. 

FPDEs have gained attention in modeling a variety of biomedical phenomena including tumor growth, drug delivery, 

tissue engineering, and disease spread. This review systematically explores the applications, computational approaches, 

and advantages of FPDEs in biological and medical modeling. 

 

APPLICATIONS IN BIOLOGICAL AND MEDICAL MODELING 

1. Anomalous Diffusion in Biological Tissues 

Fractional diffusion equations are employed to describe anomalous transport phenomena in tissues where standard 

diffusion assumptions fail. For example, subdiffusive transport of molecules in crowded cellular environments can be 

modeled by: 

 
where C(x,t) represents the concentration of a substance and α<1\alpha < 1α<1 accounts for subdiffusion. Studies show 

that FPDEs can accurately capture experimental data in biological tissue diffusion experiments (Metzler & Klafter, 

2000). 

2. Tumor Growth and Cancer Modeling 

Tumor growth exhibits non-local interactions and memory effects, which can be represented using fractional reaction-

diffusion equations: 

 
where N(x,t) is the tumor cell density, rrr is the growth rate, and KKK is the carrying capacity. Fractional models 

provide improved predictions of tumor invasion fronts compared to classical models (Henry et al., 2006). 
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DRUG DELIVERY AND PHARMACOKINETICS 

FPDEs model anomalous drug transport in complex tissues and heterogeneous organs. For instance, subdiffusive drug 

transport through porous media is modeled as: 

 
where k represents drug decay. Such models allow better prediction of concentration profiles in targeted drug delivery 

systems (Magin et al., 2008). 

 

EPIDEMIC AND DISEASE SPREAD 

FPDEs are increasingly used in modeling infectious disease spread, accounting for memory-dependent contact 

processes and anomalous mobility patterns: 

 
where S, I, and R denote susceptible, infected, and recovered populations, respectively, β is the infection rate, and γ  is 

the recovery rate. Fractional models capture long-range interactions and variable incubation periods more realistically 

than classical SIR models (Tarasov, 2011). 

 

NUMERICAL AND COMPUTATIONAL APPROACHES 

Analytical solutions for FPDEs are limited, necessitating the development of numerical schemes such as finite 

difference, finite element, and spectral methods. Caputo and Riemann-Liouville fractional derivatives are commonly 

employed for discretization. Efficient algorithms for time-fractional and space-fractional derivatives are essential for 

simulating high-dimensional biomedical systems. Adaptive mesh refinement and parallel computation techniques 

enhance the computational feasibility of FPDE models in complex biological applications. 

Analytical solutions for fractional order partial differential equations (FPDEs) are limited to a few simple cases due to 

the non-local and memory-dependent nature of fractional derivatives. As a result, numerical and computational 

approaches play a critical role in implementing FPDEs for practical biological and medical modeling. Several 

numerical schemes have been developed to discretize both time- and space-fractional derivatives, with Caputo and 

Riemann-Liouville formulations being the most commonly used.  

Finite difference methods are widely applied for time-fractional problems, where the Grünwald-Letnikov 

approximation is often employed to convert fractional derivatives into discrete sums over previous time steps, 

effectively capturing memory effects. Spatial fractional derivatives, which model long-range interactions or anomalous 

diffusion, are frequently discretized using spectral methods or shifted Grünwald schemes to maintain stability and 

accuracy. Finite element methods (FEM) have also been adapted to solve FPDEs in irregular biological geometries, 

such as tissues or organs, providing flexibility in handling complex boundaries and heterogeneous properties.  

In addition, spectral collocation and Chebyshev polynomial-based methods offer high-order accuracy for smooth 

solutions and are particularly useful in multi-dimensional fractional models. Computational efficiency is a major 

challenge, as fractional derivatives involve non-local computations that scale with the entire simulation history. To 

address this, techniques such as fast convolution algorithms, adaptive time-stepping, and parallel computing have been 

implemented, enabling simulations of large-scale biological systems, including tumor growth and drug transport.  

Hybrid approaches, combining FPDEs with machine learning, are emerging as powerful tools for parameter estimation, 

model calibration, and prediction of complex biomedical processes. Overall, the development of robust, accurate, and 

efficient numerical schemes is essential for the successful application of FPDEs in biological and medical modeling, 

facilitating their use in predictive simulations, personalized medicine, and experimental validation. 
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ADVANTAGES OF FPDES IN BIOMEDICAL MODELING 

Memory Effect Representation: Fractional derivatives naturally account for history-dependent processes. Fractional 

order partial differential equations naturally capture memory effects in biological and medical systems, reflecting how 

current states depend on past dynamics. This feature enables accurate modeling of processes such as subdiffusive 

transport in tissues, delayed cellular responses, and history-dependent disease progression, providing more realistic 

simulations than classical integer-order models. 

Anomalous Diffusion Modeling: Sub diffusion and super diffusion phenomena are captured accurately. Fractional 

order partial differential equations effectively model anomalous diffusion, including sub diffusion and super diffusion, 

observed in biological systems. By incorporating non-integer derivatives, FPDEs describe irregular particle transport, 

molecular movement in crowded cellular environments, and heterogeneous tissue diffusion, offering more precise 

representations than classical diffusion equations and improving predictions in biomedical applications. 

Non-Local Interactions: FPDEs model spatial heterogeneity and long-range effects. Fractional order partial 

differential equations capture non-local interactions, enabling the modeling of spatial heterogeneity and long-range 

effects in biological systems. This allows accurate representation of processes such as tumor cell migration, tissue 

signaling, and disease spread, where local changes are influenced by distant regions, surpassing the capabilities of 

classical local differential models. 

Improved Predictive Accuracy: Fractional models outperform integer-order models in various experimental 

validations. Fractional order partial differential equations enhance predictive accuracy in biological and medical 

modeling by incorporating memory effects, anomalous diffusion, and non-local interactions. This allows for more 

realistic simulations of complex processes such as drug transport, tumor growth, and epidemic spread, providing 

superior alignment with experimental data compared to classical integer-order models. 

 

CHALLENGES AND FUTURE DIRECTIONS 

Despite their advantages, FPDEs pose challenges including parameter estimation, computational cost, and lack of 

standardized methods for model validation in biomedical contexts. Future research may focus on hybrid models 

combining FPDEs with machine learning for parameter estimation, real-time simulations, and personalized medicine 

applications. Despite the significant advantages of fractional order partial differential equations (FPDEs) in modeling 

complex biological and medical systems, several challenges hinder their widespread adoption. One primary difficulty 

lies in parameter estimation, as fractional models require determining the orders of derivatives (α and β) and other 

system-specific coefficients, which often cannot be directly measured experimentally.  

Accurate identification of these parameters is crucial, as small variations can significantly affect model behavior, yet 

data scarcity and noise in biological measurements complicate this process. Additionally, FPDEs inherently involve 

non-local operations, where fractional derivatives depend on the entire history of the system or distant spatial regions. 

This property, while mathematically advantageous, leads to substantial computational cost, especially for high-

dimensional and long-time simulations in complex geometries, such as three-dimensional tissue structures or organ-

level models.  

Efficient numerical algorithms and memory-saving techniques are still active areas of research, with approaches such as 

fast convolution methods, adaptive time-stepping, and parallel computing being explored to improve feasibility. 

Another challenge is model validation; fractional models often outperform classical models theoretically, but 

comprehensive experimental and clinical validation remains limited. Bridging the gap between mathematical 

formulations and empirical data is essential to gain confidence in FPDE-based predictions and to translate these models 

into practical biomedical applications.  

Furthermore, interdisciplinary collaboration is required, as effective use of FPDEs demands expertise in mathematics, 

numerical computation, biology, and medicine. Looking ahead, several future directions can enhance the applicability 

and impact of FPDEs. Integration with machine learning and data-driven approaches offers promising opportunities for 

parameter estimation, model calibration, and predictive analytics. For instance, hybrid models combining FPDEs with 

neural networks can infer fractional orders from experimental datasets or optimize treatment strategies in personalized 

medicine.  
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Additionally, multi-scale modeling using FPDEs can bridge cellular, tissue, and organ-level dynamics, providing a 

comprehensive understanding of biological processes. The development of standardized frameworks, software libraries, 

and benchmarking protocols will also facilitate broader adoption in the biomedical community. Emerging applications 

in drug delivery, cancer therapy, neuroscience, and epidemiology are likely to benefit from FPDEs’ ability to represent 

memory, anomalous transport, and non-local interactions.  

Finally, further theoretical research is needed to establish rigorous analytical solutions, stability analyses, and error 

estimates for fractional models, enhancing reliability and interpretability. In summary, while challenges in 

parameterization, computational cost, validation, and interdisciplinary integration persist, ongoing advancements in 

numerical methods, hybrid modeling, and experimental validation are poised to expand the role of FPDEs in predictive, 

personalized, and translational biomedical research, solidifying their importance in understanding complex biological 

and medical phenomena. 

 

II. CONCLUSION 

Fractional order partial differential equations offer a robust framework for modeling complex biological and medical 

systems. Their ability to capture memory effects, anomalous diffusion, and non-local interactions makes them superior 

to classical integer-order models in many biomedical applications. Continued development of efficient numerical 

methods and experimental validation will further establish FPDEs as a standard tool in computational biology and 

medical research. Fractional order partial differential equations (FPDEs) have demonstrated significant potential in 

modeling complex biological and medical systems, offering distinct advantages over classical integer-order models.  

By incorporating memory effects, anomalous diffusion, and non-local interactions, FPDEs provide more accurate and 

realistic representations of processes such as tumor growth, drug transport, tissue dynamics, and disease spread. Their 

flexibility allows researchers to capture heterogeneous behavior, long-range interactions, and history-dependent 

dynamics that are prevalent in real-world biological contexts. Despite the challenges of parameter estimation, 

computational cost, and model validation, advancements in numerical methods, high-performance computing, and 

hybrid modeling approaches have enhanced the feasibility and applicability of FPDEs.  

Moreover, the integration of data-driven techniques and machine learning offers promising avenues for parameter 

inference, predictive modeling, and personalized medicine applications. This systematic review highlights the current 

state-of-the-art research, emphasizing both the practical utility and theoretical development of FPDEs in biomedical 

modeling. Continued interdisciplinary collaboration, rigorous validation, and methodological innovations are expected 

to further solidify the role of FPDEs as robust tools in understanding, predicting, and optimizing complex biological 

and medical phenomena, ultimately contributing to improved healthcare outcomes and translational research. 
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