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Abstract: Robots with the help of wearable tactile sensing arrays as a primary source can have human like 

sensitive sense of touch, which helps them to response to environmental objects. This paper gives an overall 

review the optimal grasp planning of multi-fingered hands. In order to analyze multi-fingered grasp 

qualitatively, the contact models in common use are introduced and form closure and force closure are 

analyzed, then stable operation conditions of grasping are also proposed. This paper introduces three 

aspects of planning, which serves the purpose of how to make the optimal planning. The methods about the 

planning of grasping point location are presented, including geometric analysis based method, knowledge 

rules based method and optimization based method. The planning of grasping force is divided into 

optimization of grasping force in contact force space and optimization of grasping force in joint torque 

space. The planning of fingers gate is also analyzed. At the end of the paper, a few research comparison 

results are highlighted and discussed. 
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I. INTRODUCTION 

Humans have sense of touch from which it is possible for them to recognize the object. Whereas robots don’t have such 

senses. Typically, robotic systems use visual sensors to acquire outside information, such as the location, size, and 

shape of the object. One of main faults of visual sensors is that they are difficult to use without proper lighting. To 

make up for this defect, it is necessary to find another way for robots to be able to work in the dark. Hence tactile 

sensing arrays are used on robots fingertips which give power to robots to sense any object. Therefore tactile sensors 

are one of the essential sensors for robots, due to its ability to determine object pose and recognizing gesture. For 

instance, the flexible tactile sensor arrays were used to achieve the accurate grasping movement of robotic hands, the 

MEMS tactile sensor arrays were used to detect the fabric of objects being touched, and the slip-tactile sensors and the 

tactile sensor arrays were used to detect the slippery movements of objects. Tactile sensor is frequently used to analyze 

the pressure distribution on the surface of a robotic hand while the hand performs grasping movements. The collected 

tactile array data was directly feature-extracted and sent to SVMs without building the 3D models of objects. In this 

way, the time for the additional process can be saved; and less information will be lost during processing. The main 

concern for the path planning of a robotic hand depends upon the collecting of tactile data. In contrast to the hard 

sensor, the soft and flexible tactile sensor arrays can be attached freely and used in many experiments. The benefits of 

the flexible tactile sensor arrays are that it can easily be attached to the surface of a robotic hand, even on curved 

fingertips, and it does not occupy a large area. To analyze tactile sensor array data and build a grasping database, a 

classifier should be used to classify the collected data from tests of grasping known objects. Typical classifier is SVMs 

that can project data to a high dimensional space and find a hyper plane to separate and categorize the data. SVMs have 

been widely applied to many different fields. With proper extraction of data features, the applications of tactile sensor 

arrays can be extended and the results can be furthered. If enough training data is fed into the SVM, its classification 

accuracy can be higher than that of other kinds of classifiers. The standard deviations of tactile array data were used as 

the feature data for a modified SVM algorithm, which was applied to perform multi-classification with high accuracy. 

Objects with like size but different shapes (including balls, square cubes, and columns) were identified by five-finger 

hand equipped with the tactile sensor arrays. Soft and flexible tactile skin can be used for shape recognition. Without 
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building 3D models of the objects, the extracted features from the tactile array data were directly fed into the SVM for 

classification. Fig. 1 provides the outline of the whole process.

Fig 1. Flow diagram of objects’ shape recognition.

First, a telemanipulation module is developed and equipped with flexible tactile sensor arrays. In this step, the proper 

way to grasp of the objects used will be learned. Second, the robotic hand repeats the grasping process to grasp the 

objects. The flexible degrees of all finger joints and the tactile array data are recorded at the same time. Third, the 

tactile array data analysis is added to obtain critical information that helped to effectively classify the data afterwards. 

Finally, the SVM is applied to perform the classifications and build the database. In particular, this paper studies the 

effects of different sensory streams on stable classification of grasping objects. These include the object’s information 

(such as shape), grasp information (such as approach

robotic hand, and the joints’ configuration of the robotic hand. Fig. 2 shows the overview of the control. The path 

planning makes the robotic hand movement consistent and stabilizes the 

offline database for SVMs, real-time classification can be achieved in the future.

Fig 2. Overview of the control algorithm.
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II. THEORIES AND METHODOLOGY 

Grasping Position 

Three kinds of objects with similar sizes but different shapes, including balls, square cubes, and columns, will be 

manipulated separately. To ensure that the 

tactile array data are collected under the same conditions for all three objects, a proper grasping position that can 

successfully grasp all of the objects must be learned. 

 

Features of Tactile Array Data and feature extraction 

15 patches with 233 total points of tactile sensor arrays were used. The decision of what kinds of features to be 

extracted depends upon the property of tactile sensor arrays. Since the feedback of tactile sensor arrays can be shown in 

a 2D form with digits representing the forces, it seems feasible to use the pressure distributions of different rows and 

columns. Namely, standard deviations of digital sequences are chosen to be as the features to train SVMs. 

Standard deviations help represent the pressure distribution of each row (along the X direction) of the tactile sensor 

arrays, it is feasible to use them as the feature variables in later classification. To represent the features of every set of 

tactile array data, 22 standard deviations (from every row) of the data were calculated and composed of a feature set. 

The standard deviation function is 

 
where, � is the standard deviation, n represents the total number of variables to be calculated, X is the variable, and �	�s 

the mean of all variables. The actual classifier used in the experiment was the modified SVM algorithm called SVC. 

SVC uses the same theory as SVM, but it can do multi-classification work. 

 

Support Vector Machine (SVM) 

A proper classifier will be trained and a database will be built from the training data. In this paper, SVMs were chosen 

to be applied. The illustration of the SVM is shown in Fig. 3. SVMs are a type of supervised learning model with 

associated learning algorithms that analyze data used for classification and regression analysis. Usually, SVMs are used 

to classify data into two groups and to find a Hyperplane to separate them. Since three kinds of objects will be classified 

in the experiment of this paper, the SVM algorithm is redesigned to fit the purpose of multi-classification. When using 

the SVM, the extracted features (22 standard deviations) from the tactile array data are the input training set, and the 

shape label is the output classification. The main function of the SVM is to build a tactile database for the five-finger 

hand to follow in the future. This database should contain enough information to help classify objects. 

 
Fig 2. Support Vector Machine (SVM) 
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III. SYSTEM OVERVIEW 

Robotic System 

The robots used in this paper are the NTU (National Taiwan University) five-finger hand and the NTU articulated six 

degrees of freedom (DOF) robot arm. To prevent the NTU five-finger hand from hurting itself and the objects being 

manipulated, an intelligent humanoid robotic hand with 12 DOF and 19 joints was designed. A series elastic actuator 

(SEA) and under-actuated mechanism were also applied to give the robotic hand a compliant property and high 

dexterity; hence, a humanoid robotic hand was devised. To obtain the proper path for the NTU five-finger hand to grasp 

objects, a telemanipulation module was developed to learn the best grasping position. The flexible tactile array skin was 

attached to the NTU five-finger hand with a layer of hydrocolloid dressing added over the top surface. 

 

Telemanipulation module 

The telemanipulation module includes a pair of control gloves and each one is composed of ten flex sensors and an 

Arduino Mega. A flex sensor is a kind of variable resistance sensor that detects the flex degree of each finger joint. The 

Arduino Mega detects and transfers the flex sensor values to the computer. Control gloves measure the human finger 

joint angles for mapping the human-to-robot hand motions. These angles are used to set the values for the motor joint 

angles of the NTU five-finger hand. Fig. 3.1 shows the corresponding finger joints of human hand measured by the flex 

sensors on the control gloves. In total, ten flex sensors are used (two for each finger). 

 
Fig 3.1. Indication of corresponding finger joints. 

 

Tactile Sensors 

The flexible tactile sensor arrays were used to achieve the accurate grasping movement of robotic hands, the MEMS 

tactile sensor arrays were used to detect the fabric of objects being touched, and the slip-tactile sensors and the tactile 

sensor arrays were used to detect the slippery movements of objects. Tactile sensor is frequently used to analyze the 

pressure distribution on the surface of a robotic hand while the hand performs grasping movements. 

In contrast to the hard sensor, the soft and flexible tactile sensor arrays can be attached freely and used in many 

experiments. The benefits of the flexible tactile sensor arrays are that it can easily be attached to the surface of a robotic 

hand, even on curved fingertips, and it does not occupy a large area. Fig 3.2 shows structure of flexible tactile sensor 

and Fig 3.3 shows tactile multiarray sensor design. 

 
Fig 3.2. Structure of flexible tactile sensor. 
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Fig 3.3. Multiarray sensor design 

 

Installment of tactile sensor arrays 

The tactile sensor arrays set used in this experiment is a flexible tactile skin, which is a distributed tactile sensor arrays 

with 376 detecting points on its surface. It can detect the pressure of the separate parts of the NTU five-finger hand and 

convert the pressure into force with a high temporal resolution of more than 100 Hz. Therefore, the pressure change can 

be detected immediately during any movement. Before being installed on the NTU five-finger hand, the flexible tactile 

skin is calibrated with counterweights for each separate tactile sensor arrays patch. The tactile array data from 15 

patches of sensors were used. A layer of thick hydrocolloid dressing was added on the top surface of the tactile sensor 

arrays to improve sensing ability, softness, and friction. The thick hydrocolloid dressing is about 2 mms thick, 

composed of 1 mm of hydrocolloid material and 1 mm of a soft sponge. The final appearance of the NTU five-finger 

hand is shown in Fig. 3.4. 

 
Fig 3.4 NTU five-finger hand with tactile sensor arrays and hydrocolloid dressing. 

 

IV. FEATURE EXTRACTION 

Fig. 4(a) shows the arrangement of tactile sensor arrays on the NTU five-finger hand. The pressure values can be 

displayed directly on the computer with color blocks in gradient labeling different values. Fig. 4(b), (c), and (d) show 

the approximate pressure distributions when grasping column, ball, and square cube, respectively. As shown in Fig. 7, 

the pressure distributions for different objects are quite different. 
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(a) 

 
(b) Column     (c) ball      (d) square 

Fig 4. Arrangement of tactile sensor arrays and the grasping gestures and approximate pressure distribution for three 

objects (a) (b) (c). 

 

V. GRASPING POSITIONS USED IN THE EXPERIMENT 

There are two grasping positions used in the experiment. To show the availability of the methods proposed in this 

paper, two sets of results are shown in Table I and Table II, respectively. Table I shows the results of the classification 

that only uses the data from single grasping position, and Table II shows the results of the classification that uses the 

data from two grasping positions. 

 
Table I. CLASSIFICATION ACCURACIES WITH SINGLE GRASPING POSITION 
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Table II. CLASSIFICATION ACCURACIES WITH TWO GRASPING POSITIONS 

 

VI. CONCLUSION 

The grasping operation of dexterous multi-finger hand is the emphasis and difficulty. It involves contact type, friction 

characteristics, the adaptability of grasping, stability, the feature modeling of grasping purpose, the quality modeling of 

grasping and so on. The primary challenge s that how the multi-fingered hands manipulate objects flexibly as human 

hands by learning from human hands or analyzing its movement [4]. So it is particularly important for the grasp 

planning of multi-finger hand. The problems of grasp planning have been extensively studied by scholars and a lot of 

planning methods and algorithms were put forward. The progress of multifingered grasping was presented and 

discussed in this paper. But because of the uncertainty of the environment and the multiplicity of grasping information, 

planning method need to be further improved. 
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