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Abstract: Optimization strategies are explained. The 

is provided in standard form, and many strategies for solving it are investigated. Local algorithms are 

gradient-based, whereas global algorithms are evolutionary or non

techniques are many, hence a complete examination isn't possible. Instead, engineering optimization 

approaches are prioritized. The study remains general without including multi

convex problems, linear programming, interdisciplinary opt

solution are highlighted, and suggestions are made to assist the designer pick the best one for the problem. 

A brief summary of a typical approach is given where possible to aid discussion about that algorithm 

category. 
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It is helpful to provide the standard form of the general optimization issue that will be handled by these approaches 

before beginning a study of the various optimization strategies. Equation 1 below gives the typical form for a non

linear, restricted, single-objective optimization problem. 

 

The aim (or goal) function is represented by f

hk(x). The n design variables that are changed to get the best

limits, or side constraints, xiL and xiU, of the design variables establish the searchable design space. The aim and 

constraint functions might be either explicit or implicit, linear or non

Numerical simulation of response functions like stress values often produces them. Also, continuous design variables 

are superfluous. If some or all design variables are integer or discrete, optimization difficulties are typical.

algorithms can optimize integer and discrete variables, whereas local algorithms cannot. 

The majority of optimization algorithms separate side constraints from equality and inequality constraints. The 

algorithm's direct side limitation works well. Well

optimization problems may contain side constraints without equality or inequality constraints. With or without side 

constraints, constrained optimization problems have equality an

problems, inequality constraints may be violated, activated, or satisfied, whereas equality constraints can only be met. 

A gj (x) = 0 inequality limitation is enabled. 

To solve Eq. 1, methods or optimization are used. Finding design variable values that maximize the objective function 

while satisfying equality, inequality, and side constraint restrictions is the aim. Some problems have several local or 

relative optima. Different categories of optimizatio

Brief, thorough explanations of common algorithms complement their presentation.
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Optimization strategies are explained. The general non-linear, constrained optimization problem 

is provided in standard form, and many strategies for solving it are investigated. Local algorithms are 

based, whereas global algorithms are evolutionary or non-gradient-based. Optimization 

niques are many, hence a complete examination isn't possible. Instead, engineering optimization 

approaches are prioritized. The study remains general without including multi-objective optimization, 

convex problems, linear programming, interdisciplinary optimization, etc. The pros and cons of each 

solution are highlighted, and suggestions are made to assist the designer pick the best one for the problem. 

A brief summary of a typical approach is given where possible to aid discussion about that algorithm 

thms, Gradient-based algorithms, Global algorithms 

I. INTRODUCTION 

It is helpful to provide the standard form of the general optimization issue that will be handled by these approaches 

before beginning a study of the various optimization strategies. Equation 1 below gives the typical form for a non

objective optimization problem.  

                           (1) 

The aim (or goal) function is represented by f(x) in Eq. 1, an inequality constraint by gj(x), and an equality constraint by 

The n design variables that are changed to get the best result are represented by the x vector. The upper and lower 

of the design variables establish the searchable design space. The aim and 

explicit or implicit, linear or non-linear, in the usual scenario.  

Numerical simulation of response functions like stress values often produces them. Also, continuous design variables 

are superfluous. If some or all design variables are integer or discrete, optimization difficulties are typical.

algorithms can optimize integer and discrete variables, whereas local algorithms cannot.  

The majority of optimization algorithms separate side constraints from equality and inequality constraints. The 

well. Well-designed algorithms never violate side constraints. Unconstrained 

optimization problems may contain side constraints without equality or inequality constraints. With or without side 

constraints, constrained optimization problems have equality and inequality constraints. In restricted optimization 

problems, inequality constraints may be violated, activated, or satisfied, whereas equality constraints can only be met. 

A gj (x) = 0 inequality limitation is enabled.  

ation are used. Finding design variable values that maximize the objective function 

while satisfying equality, inequality, and side constraint restrictions is the aim. Some problems have several local or 

relative optima. Different categories of optimization methods exist. Short overview of local and global algorithms. 

Brief, thorough explanations of common algorithms complement their presentation.  
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n Large-Scale 

linear, constrained optimization problem 

is provided in standard form, and many strategies for solving it are investigated. Local algorithms are 

based. Optimization 

niques are many, hence a complete examination isn't possible. Instead, engineering optimization 

objective optimization, 

imization, etc. The pros and cons of each 

solution are highlighted, and suggestions are made to assist the designer pick the best one for the problem. 

A brief summary of a typical approach is given where possible to aid discussion about that algorithm 

It is helpful to provide the standard form of the general optimization issue that will be handled by these approaches 

before beginning a study of the various optimization strategies. Equation 1 below gives the typical form for a non-

and an equality constraint by 

result are represented by the x vector. The upper and lower 

of the design variables establish the searchable design space. The aim and 

Numerical simulation of response functions like stress values often produces them. Also, continuous design variables 

are superfluous. If some or all design variables are integer or discrete, optimization difficulties are typical. Some global 

The majority of optimization algorithms separate side constraints from equality and inequality constraints. The 

designed algorithms never violate side constraints. Unconstrained 

optimization problems may contain side constraints without equality or inequality constraints. With or without side 

d inequality constraints. In restricted optimization 

problems, inequality constraints may be violated, activated, or satisfied, whereas equality constraints can only be met. 

ation are used. Finding design variable values that maximize the objective function 

while satisfying equality, inequality, and side constraint restrictions is the aim. Some problems have several local or 

n methods exist. Short overview of local and global algorithms. 
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II. LOCAL OPTIMIZATION A

The bulk of local optimization methods use gradients. Gradient

optimum Eq. 1 solution. Gradient-based approaches solve several optimization problems in engineering. These 

approaches are popular because they can handle problems with many design variables, are efficient

function evaluations required to find the optimum), and need minimum problem

algorithms can only discover a local optimum, struggle to address discrete optimization problems, are expensive and 

difficult to implement, and may be subject to numerical noise. Several textbooks cover the approaches. Textbooks like 

Haftka and Gurdal (1993), Arora (2004), Snyman (2005), and Vanderplaats (2007) are examples. Readers can consult 

these textbooks for extra references. 

At get at the optimal result, gradient-based algorithms usually use a two

hill wearing a blindfold (Vanderplaats, 2007) might be used to illustrate this two

remain within the fences (the restrictions) and climb to the top of the hill (the objective function). The boy's x and y 

coordinates are the design variables. The youngster may really begin beyond the walls, demonstrating a crucial use of 

optimization techniques: determining a workable design. 

Figure 1: Gradient

The blinded child may climb the hill by taking one step in the x direction and another step in the y direction, which is 

an analogy to gradient-based optimization. He can estimate a direction that would lead him upward using the 

knowledge gathered from these two stages. The youngster may then continue walking in this manner until he is no 

longer able to do so, which can include coming to a fence. The child can now, while still within the gates, take two little 

steps to find a new path that will lead him hig

Mathematically, this two-step iterative method of finding the optimum is expressed as follows: 

                                                      

where the first step is to identify a search direction S to travel in by using gradient information. Continuing in this path 

until further advancement is impossible is the second phase. The optimal step size, α

which is referred to as the one-dimensional or line search. It should be noted that not all gradient

depend on a one-dimensional search.  

The gradient information for the majority of optimization problems is comp

methods since it is not easily accessible. The gradient information may be estimated in a flexible way using finite 

difference gradients. When they are used, nevertheless, they usually account for the majority of the o

time needed to finish an optimization research. The necessary gradient information may be obtained using automated 

differentiation (e.g., Griewank and Walther 2008) if the designer has access to the source code. Accurate gradient 

information to working precision is one of the advantages of automatic differentiation. On the other hand, the precision 

of the gradient is only approximated by finite difference computations, which rely on the step size that is chosen. 

Lastly, analytic or semi-analytic gradient information may be directly obtained from some numerical simulations. For 
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LOCAL OPTIMIZATION ALGORITHMS 

The bulk of local optimization methods use gradients. Gradient-based optimization uses gradient information to find the 

based approaches solve several optimization problems in engineering. These 

approaches are popular because they can handle problems with many design variables, are efficient

function evaluations required to find the optimum), and need minimum problem-specific parameter adjustment. These 

algorithms can only discover a local optimum, struggle to address discrete optimization problems, are expensive and 

implement, and may be subject to numerical noise. Several textbooks cover the approaches. Textbooks like 

Haftka and Gurdal (1993), Arora (2004), Snyman (2005), and Vanderplaats (2007) are examples. Readers can consult 

 

III. BACKGROUND 

based algorithms usually use a two-step procedure. The image of a youngster on a 

hill wearing a blindfold (Vanderplaats, 2007) might be used to illustrate this two-step procedure. The boy's task is t

remain within the fences (the restrictions) and climb to the top of the hill (the objective function). The boy's x and y 

coordinates are the design variables. The youngster may really begin beyond the walls, demonstrating a crucial use of 

chniques: determining a workable design.  

Gradient-based optimization (published with permission) 

The blinded child may climb the hill by taking one step in the x direction and another step in the y direction, which is 

based optimization. He can estimate a direction that would lead him upward using the 

se two stages. The youngster may then continue walking in this manner until he is no 

longer able to do so, which can include coming to a fence. The child can now, while still within the gates, take two little 

steps to find a new path that will lead him higher. He may repeat this procedure until he reaches the summit of the hill. 

step iterative method of finding the optimum is expressed as follows:  

                                                                                     (2) 

where the first step is to identify a search direction S to travel in by using gradient information. Continuing in this path 

until further advancement is impossible is the second phase. The optimal step size, α⋆, is provided by the second step, 

dimensional or line search. It should be noted that not all gradient

The gradient information for the majority of optimization problems is computed using finite difference gradient 

methods since it is not easily accessible. The gradient information may be estimated in a flexible way using finite 

difference gradients. When they are used, nevertheless, they usually account for the majority of the o

time needed to finish an optimization research. The necessary gradient information may be obtained using automated 

differentiation (e.g., Griewank and Walther 2008) if the designer has access to the source code. Accurate gradient 

tion to working precision is one of the advantages of automatic differentiation. On the other hand, the precision 

of the gradient is only approximated by finite difference computations, which rely on the step size that is chosen. 

nalytic gradient information may be directly obtained from some numerical simulations. For 
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optimization uses gradient information to find the 

based approaches solve several optimization problems in engineering. These 

approaches are popular because they can handle problems with many design variables, are efficient (in terms of 

specific parameter adjustment. These 

algorithms can only discover a local optimum, struggle to address discrete optimization problems, are expensive and 

implement, and may be subject to numerical noise. Several textbooks cover the approaches. Textbooks like 

Haftka and Gurdal (1993), Arora (2004), Snyman (2005), and Vanderplaats (2007) are examples. Readers can consult 

step procedure. The image of a youngster on a 

step procedure. The boy's task is to 

remain within the fences (the restrictions) and climb to the top of the hill (the objective function). The boy's x and y 

coordinates are the design variables. The youngster may really begin beyond the walls, demonstrating a crucial use of 

 

The blinded child may climb the hill by taking one step in the x direction and another step in the y direction, which is 

based optimization. He can estimate a direction that would lead him upward using the 

se two stages. The youngster may then continue walking in this manner until he is no 

longer able to do so, which can include coming to a fence. The child can now, while still within the gates, take two little 

her. He may repeat this procedure until he reaches the summit of the hill.  

where the first step is to identify a search direction S to travel in by using gradient information. Continuing in this path 

ovided by the second step, 

dimensional or line search. It should be noted that not all gradient-based algorithms 

uted using finite difference gradient 

methods since it is not easily accessible. The gradient information may be estimated in a flexible way using finite 

difference gradients. When they are used, nevertheless, they usually account for the majority of the overall computation 

time needed to finish an optimization research. The necessary gradient information may be obtained using automated 

differentiation (e.g., Griewank and Walther 2008) if the designer has access to the source code. Accurate gradient 

tion to working precision is one of the advantages of automatic differentiation. On the other hand, the precision 

of the gradient is only approximated by finite difference computations, which rely on the step size that is chosen. 

nalytic gradient information may be directly obtained from some numerical simulations. For 
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linear finite element codes, for instance, analytic and semi

information for structural optimization appl

programs may also effectively perform semi

gradient that the analysis application provides if it is 

computations, the gradient information provided from the analysis code is frequently more accurate and may be 

acquired at a considerable reduction in computing cost. 

In Eq. 2, distinct search directions are needed based on the circumstances. A search direction that will enhance the 

objective function is sought for unconstrained optimization problems, or constrained optimization problems with no 

active or violated constraints. A direction that can be used to enhance the goal function is called a useful direction. A 

search path that will overcome the constraint violation is sought for restricted optimization problems having one or 

more violated constraints. A viable and workable search path is needed for restricted optimization problems with one or 

more active constraints and no violated constraints. Any path that doesn't go beyond the confines of the limitation is 

viable.  

The primary difference between the various gradie

direction selection. Numerous algorithms may be used to determine the optimal step size for a one

and most of these methods can be paired with a specific gradient

dimensional search. A few well-liked one

Section search, and other polynomial approximation variants. The Karush

used to ascertain if a limited local optimum has been identified when gradient information is provided. The 

prerequisites for a local optimum are provided by the Karush

follows:  

The optimum design point x⋆ must be feasible.

At the optimum design point, the gradient of the Lagranian must vanish

 

where the Lagrange multipliers λj ≥ 0 and λ

3. For each inequality constraint λjgj(X) = 0, where j = 1, m.

It should be noted that the Karush-Kuhn

objective function's gradient disappear at the optimal design point. While they may be helpful in locatin

optimum, the Karush-Kuhn-Tucker criteria are unable to reveal if a global optimum has been discovered. 

Newton’s Method  

Newton's method is one of the traditional gradient

series expansion of the objective function around an initial design point, Newton's method is an unconstrained 

algorithm. 

where H(x0) is the Hessian matrix containing the objective function's second

formula for the current design point may be obtained by differentiating Eq. 4 with respect to x and putting the result 

equal to zero in accordance with the Karush

                                    

Note that, in this classic form, Newton’s method makes use of a fixed step size of 1 (no one

required) and the search direction is provided by 

size equal to 1) to achieve the optimum for any positive definite quadratic function, and it has a quadratic rate of 

convergence. In actual use, the technique is adjusted to include a one

resilience and efficiency.  
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linear finite element codes, for instance, analytic and semi-analytic gradient computations may be used to give gradient 

information for structural optimization applications at a low computational cost. Computational fluid dynamics 

programs may also effectively perform semi-analytic gradient computations. Generally speaking, you should utilize the 

gradient that the analysis application provides if it is Accessible. When compared to doing finite difference gradient 

computations, the gradient information provided from the analysis code is frequently more accurate and may be 

acquired at a considerable reduction in computing cost.  

In Eq. 2, distinct search directions are needed based on the circumstances. A search direction that will enhance the 

objective function is sought for unconstrained optimization problems, or constrained optimization problems with no 

raints. A direction that can be used to enhance the goal function is called a useful direction. A 

search path that will overcome the constraint violation is sought for restricted optimization problems having one or 

orkable search path is needed for restricted optimization problems with one or 

more active constraints and no violated constraints. Any path that doesn't go beyond the confines of the limitation is 

The primary difference between the various gradient-based algorithms now in use is the reasoning behind the search 

direction selection. Numerous algorithms may be used to determine the optimal step size for a one-

and most of these methods can be paired with a specific gradient-based algorithm to carry out the necessary one

liked one-dimensional search algorithms include the Fibonacci search, the Golden 

Section search, and other polynomial approximation variants. The Karush-Kuhn-Tucker (KKT) requirements m

used to ascertain if a limited local optimum has been identified when gradient information is provided. The 

prerequisites for a local optimum are provided by the Karush-Kuhn-Tucker requirements, which may be summed up as 

must be feasible.  

At the optimum design point, the gradient of the Lagranian must vanish  

                                              (3) 

λm+k are unrestricted in sign.  

(X) = 0, where j = 1, m.  

Kuhn-Tucker requirements for unconstrained problems merely demand that the 

objective function's gradient disappear at the optimal design point. While they may be helpful in locatin

Tucker criteria are unable to reveal if a global optimum has been discovered. 

Newton's method is one of the traditional gradient-based optimization techniques. Based on a second

sion of the objective function around an initial design point, Newton's method is an unconstrained 

                                                   (4) 

is the Hessian matrix containing the objective function's second-order gradient information. The update 

formula for the current design point may be obtained by differentiating Eq. 4 with respect to x and putting the result 

equal to zero in accordance with the Karush-Kuhn-Tucker criteria.  

                                                                                     (5) 

Note that, in this classic form, Newton’s method makes use of a fixed step size of 1 (no one-dimensional search is 

required) and the search direction is provided by −H(x0)−1 ∇f(x0). Newton's approach requires just one step (with step 

size equal to 1) to achieve the optimum for any positive definite quadratic function, and it has a quadratic rate of 

convergence. In actual use, the technique is adjusted to include a one-dimensional search, which increases the method's 
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analytic gradient computations may be used to give gradient 

ications at a low computational cost. Computational fluid dynamics 

analytic gradient computations. Generally speaking, you should utilize the 

en compared to doing finite difference gradient 

computations, the gradient information provided from the analysis code is frequently more accurate and may be 

In Eq. 2, distinct search directions are needed based on the circumstances. A search direction that will enhance the 

objective function is sought for unconstrained optimization problems, or constrained optimization problems with no 

raints. A direction that can be used to enhance the goal function is called a useful direction. A 

search path that will overcome the constraint violation is sought for restricted optimization problems having one or 

orkable search path is needed for restricted optimization problems with one or 

more active constraints and no violated constraints. Any path that doesn't go beyond the confines of the limitation is 

based algorithms now in use is the reasoning behind the search 

-dimensional search, 

lgorithm to carry out the necessary one-

dimensional search algorithms include the Fibonacci search, the Golden 

Tucker (KKT) requirements may be 

used to ascertain if a limited local optimum has been identified when gradient information is provided. The 

Tucker requirements, which may be summed up as 

 

Tucker requirements for unconstrained problems merely demand that the 

objective function's gradient disappear at the optimal design point. While they may be helpful in locating a local 

Tucker criteria are unable to reveal if a global optimum has been discovered.  

based optimization techniques. Based on a second-order Taylor 

sion of the objective function around an initial design point, Newton's method is an unconstrained 

gradient information. The update 

formula for the current design point may be obtained by differentiating Eq. 4 with respect to x and putting the result 

dimensional search is 

Newton's approach requires just one step (with step 

size equal to 1) to achieve the optimum for any positive definite quadratic function, and it has a quadratic rate of 

ch, which increases the method's 



 

 

       International Journal of Advanced 

                               International Open-Access, Double

Copyright to IJARSCT 
www.ijarsct.co.in 

Impact Factor: 7.53 

In most circumstances, the approach is not practicable due to the computational expense involved in extracting the 

second-order gradient information in the Hessian matrix, despite the method's hi

rate. Because of this, the majority of gradient

IV. UNCONSTRAINED OPTIMI

The Fletcher-Reeves method and the Broyden Fletcher

unconstrained issues. The Fletcher-Reeves approach, sometimes called a conjugate gradient method, makes use of 

conjugate search directions to arrive at the best answer. The conjugate search directions are constructed usin

the preceding design iteration. Theoretically, this method can reduce a quadratic function in n iterations or fewer. It 

works very nicely. It also has the advantage of using less computer memory. 

The BFGS method belongs to the family of variab

information gleaned from the previous n iterations. Numerical investigations indicate that the BFGS technique is the 

most efficient variable metric approach. The inverse of the Hessian mat

method in Eq. 5. This approximation is updated using the first

Since the method only makes use of an approximation to the inverse of the Hessian matrix, i

Newton approach. The BFGS methodology is considered to be theoretically better than the Fletcher

while requiring much more computer capacity to store the estimated inverse of the Hessian matrix. 

V. CONSTRAINED 

Here, two methods for limited optimization issues are examined. The first is referred to as the Sequential Unconstrained 

Minimization Techniques (SUMT) approach (Fiacco and McCormick, 1968) provides a thorough review of the 

methodology), while the second is referred to as direct (or constrained) approaches. The general constrained 

optimization issue is solved using the SUMT method by first translating it into a corresponding unconstrained problem. 

Then, we solve this comparable unconstrained i

punishing the original goal function for every violation of the constraints, the SUMT technique yields an identical 

unconstrained problem. The objective function with a penalty is derived

                             

where fp(x) is the penalized objective function, p(x) is the punishment function, and rp is the penalty parameter. The 

traditional method is to maintain rp constant during the whole unrestricted fp minimization cycle. The unconstrained 

optimization cycle is repeated when the unconstrained optimal solution has been

parameter rp is raised. The outcome is a step

the objective function converges during consecutive cycles of unconstrained optimization, the process is declared 

finished. Penalty functions vary widely (for more information, see the previousl

quadratic penalty function, which is popular, is as follows:

From the unfeasible area of the design space, the outer penalty function moves closer to the limited optimum. 

Additionally, within the feasible portion of the design space, there exist interior and extended interior penalty functions 

that approach the limited optimum. These approaches' largest flaw has to do with the penalty parameter's value. The 

algorithm's performance is greatly impacted by the penalty parameter, which is problem

quite high to provide acceptable results, 

around this restriction is the augmented Lagrange multiplier approach, which establishes penalty parameters using 

estimations of the Lagrange multipliers and builds a punishment func

rp, the Augmented Lagrange multiplier approach has the benefit of accurate constraint fulfillment and is less sensitive 

to the chosen rp value.  

As direct (or limited) approaches have become more sophisti

their appeal. Today, the direct methods which will be covered next 
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In most circumstances, the approach is not practicable due to the computational expense involved in extracting the 

order gradient information in the Hessian matrix, despite the method's highly desired quadratic convergence 

rate. Because of this, the majority of gradient-based techniques only use first-order gradient information. 

 

UNCONSTRAINED OPTIMIZATION 

Reeves method and the Broyden Fletcher-Goldfarb-Shanno (BFGS) strategy are two popular strategies for 

Reeves approach, sometimes called a conjugate gradient method, makes use of 

conjugate search directions to arrive at the best answer. The conjugate search directions are constructed usin

the preceding design iteration. Theoretically, this method can reduce a quadratic function in n iterations or fewer. It 

works very nicely. It also has the advantage of using less computer memory.  

The BFGS method belongs to the family of variable metric techniques, which selects a new search direction based on 

information gleaned from the previous n iterations. Numerical investigations indicate that the BFGS technique is the 

most efficient variable metric approach. The inverse of the Hessian matrix, H(X0)−1, is approximated via the BFGS 

method in Eq. 5. This approximation is updated using the first-order gradient data from each design iteration after that. 

Since the method only makes use of an approximation to the inverse of the Hessian matrix, it is referred to as a quasi

Newton approach. The BFGS methodology is considered to be theoretically better than the Fletcher

while requiring much more computer capacity to store the estimated inverse of the Hessian matrix.  

 

CONSTRAINED OPTIMIZATION 

Here, two methods for limited optimization issues are examined. The first is referred to as the Sequential Unconstrained 

Minimization Techniques (SUMT) approach (Fiacco and McCormick, 1968) provides a thorough review of the 

e the second is referred to as direct (or constrained) approaches. The general constrained 

optimization issue is solved using the SUMT method by first translating it into a corresponding unconstrained problem. 

Then, we solve this comparable unconstrained issue using any of the previously stated unconstrained techniques. By 

punishing the original goal function for every violation of the constraints, the SUMT technique yields an identical 

unconstrained problem. The objective function with a penalty is derived from  

                                                                                     (6) 

is the penalized objective function, p(x) is the punishment function, and rp is the penalty parameter. The 

constant during the whole unrestricted fp minimization cycle. The unconstrained 

optimization cycle is repeated when the unconstrained optimal solution has been identified, at which point the penalty 

parameter rp is raised. The outcome is a step-by-step advancement towards the limited optimal state. When the value of 

the objective function converges during consecutive cycles of unconstrained optimization, the process is declared 

finished. Penalty functions vary widely (for more information, see the previously indicated text books). The exterior 

quadratic penalty function, which is popular, is as follows: 

                                                          (7) 

From the unfeasible area of the design space, the outer penalty function moves closer to the limited optimum. 

Additionally, within the feasible portion of the design space, there exist interior and extended interior penalty functions 

ted optimum. These approaches' largest flaw has to do with the penalty parameter's value. The 

algorithm's performance is greatly impacted by the penalty parameter, which is problem-specific and often has to be set 

quite high to provide acceptable results, which might result in numerical ill-conditioning. One technique that gets 

around this restriction is the augmented Lagrange multiplier approach, which establishes penalty parameters using 

estimations of the Lagrange multipliers and builds a punishment function based on the Lagrangian. For a finite value of 

rp, the Augmented Lagrange multiplier approach has the benefit of accurate constraint fulfillment and is less sensitive 

As direct (or limited) approaches have become more sophisticated and effective, SUMT methods have lost some of 

hods which will be covered next are the preferred gradient-
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In most circumstances, the approach is not practicable due to the computational expense involved in extracting the 

ghly desired quadratic convergence 

order gradient information.  

egy are two popular strategies for 

Reeves approach, sometimes called a conjugate gradient method, makes use of 

conjugate search directions to arrive at the best answer. The conjugate search directions are constructed using data from 

the preceding design iteration. Theoretically, this method can reduce a quadratic function in n iterations or fewer. It 

le metric techniques, which selects a new search direction based on 

information gleaned from the previous n iterations. Numerical investigations indicate that the BFGS technique is the 

−1, is approximated via the BFGS 

order gradient data from each design iteration after that. 

t is referred to as a quasi-

Newton approach. The BFGS methodology is considered to be theoretically better than the Fletcher-Reeves method, 

 

Here, two methods for limited optimization issues are examined. The first is referred to as the Sequential Unconstrained 

Minimization Techniques (SUMT) approach (Fiacco and McCormick, 1968) provides a thorough review of the 

e the second is referred to as direct (or constrained) approaches. The general constrained 

optimization issue is solved using the SUMT method by first translating it into a corresponding unconstrained problem. 

ssue using any of the previously stated unconstrained techniques. By 

punishing the original goal function for every violation of the constraints, the SUMT technique yields an identical 

is the penalized objective function, p(x) is the punishment function, and rp is the penalty parameter. The 

constant during the whole unrestricted fp minimization cycle. The unconstrained 

identified, at which point the penalty 

ancement towards the limited optimal state. When the value of 

the objective function converges during consecutive cycles of unconstrained optimization, the process is declared 

y indicated text books). The exterior 

From the unfeasible area of the design space, the outer penalty function moves closer to the limited optimum. 

Additionally, within the feasible portion of the design space, there exist interior and extended interior penalty functions 

ted optimum. These approaches' largest flaw has to do with the penalty parameter's value. The 

specific and often has to be set 

conditioning. One technique that gets 

around this restriction is the augmented Lagrange multiplier approach, which establishes penalty parameters using 

tion based on the Lagrangian. For a finite value of 

rp, the Augmented Lagrange multiplier approach has the benefit of accurate constraint fulfillment and is less sensitive 

cated and effective, SUMT methods have lost some of 

-based approach for 
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solving limited optimization issues. The SUMT techniques are seeing a renaissance in one intriguing domain: extremely 

large-scale (number of design variables) optimization issues. An example of a commercially accessible method for 

solving constrained optimization problems with hundreds of thousands of design variables is the BigDOT algorithm 

from Vanderplaats Research and Development, Inc. (Vanderplaats, 2004). 

Equation 1's non-linear constrained optimization issue is solved directly using the direct techniques. There are several 

options for restricted optimization techniques. Three algorithms are often used in engineering: the Sequential Linear 

Programming (SLP) method, the Sequential Quadratic Programming (SQP) algorithm, and the Modified Method of 

Feasible Directions (MMFD) algorithm.  

The SLP method creates linear approximations to the objective and constraint functions around the current design point, 

therefore simplifying the general non-linear constrained optimization issue to an equivalent linear problem. The best 

solution for these linear approximations is identified using a suitable method, and the resultant design point is assessed. 

This freshly assessed design point is the subject of a new series of linear approximations, which are built and the 

process repeated until convergence. The approach may not always provide a workable solution since it is very sensitive 

to move restrictions. It is thus usually seen as being less effective than the MMFD and SQP algorithms.  

The feasible directions algorithm's initial technique was modified to serve as the foundation for the MMFD algorithm. 

Instead of traveling over the feasible area in quest of the optimum, the modification offers a search direction that tracks 

the boundaries of the current constraint. The MMFD technique is often used in structural optimization because of its 

great robustness and ability to locate the viable design space rapidly.  

Probably the most often used direct approach for engineering optimization applications is the SQP algorithm. By 

solving an approximate problem based on a linear approximation of the constraint functions and a quadratic 

approximation of the goal function, this method determines the direction of the search. The step size in the acquired 

search direction is usually decided using a penalty function after the new search direction has been established. The 

method is then continued until convergence is reached, evaluating as the new design point the result of combining the 

search direction and the optimal step size (using Eq. 2). While the one-dimensional search is usually carried out using a 

penalty function, a novel method by Fletcher and Leyffer (2002) offers an intriguing alternative, using a bi-objective 

formulation to substitute a filter for the one-dimensional search. Gradient projection and the extended reduced gradient 

techniques are two more direct approaches that may be used; they won't be covered here. There are just too many 

gradient-based algorithms to list them all here. Snyman (2005) contains an excellent collection of relatively recent 

gradient based methods by Snyman and his collaborators. Large numbers of design variables, costly function 

evaluations, discontinuities, local minima, and regions of the design space where the functions are not specified are all 

common in real-world issues that these methods were created to handle. The set of algorithms includes those that don't 

use a one-dimensional search and just need first-order gradient information. Approximation techniques, global 

unconstrained optimization techniques, and algorithms for both restricted and unconstrained optimization are discussed.  

 

VI. NON-GRADIENT BASED METHODS 

It would be incomplete to describe local search strategies without acknowledging the existence of non-gradient based 

local search algorithms. Powell's approach and the Nelder-Mead simplex algorithm are well-known examples. It is 

possible to solve non-linear, unconstrained optimization problems using both strategies. While the Nelder-Mead 

approach uses a simplex and a set of straightforward criteria that reflect the worst vertex via the simplex's centroid, 

Powell's technique is built on the idea of conjugate directions.  

 

A. Global Optimization Algorithms  

The issue of local versus global optimization has already been discussed briefly in previous sections. Many problems 

have multiple optima, with a simple one variable function shown in Fig. 2 below.  
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Figure 2: One dimensional multi-modal function 

In Fig. 2, the minima at x ≈ ±1 represent local (or relative) minima, while the minimum at x = 0 represents the global 

(or absolute) minimum. All three these points satisfy the Karush-Kuhn-Tucker conditions. The local algorithms 

discussed so far will converge on any of these three points, depending on which one is encountered first. When using 

local optimization algorithms, a simple approach for dealing with multiple local minima in the design space is to use a 

multistart approach (e.g., Haim et al. (1999) and Cox et al. (2001)). In a multi-start approach, multiple local searches 

are performed, each starting from a different starting point. Often, a design of experiments (DOE) approach is used to 

generate the set of starting points.  

Global optimization algorithms provide a much better chance of finding the global or near global optimum than the 

local algorithms discussed so far. It is important to note that no algorithm can guarantee convergence on a global 

optimum in the general sense, and it may be more accurate to refer to these algorithms as having global properties. 

Global optimization algorithms may be classified as either evolutionary algorithms or deterministic algorithms.  

 

B. Evolutionary Algorithms  

Evolutionary optimization approaches have been more popular during the past decade or so years. Unlike the local 

techniques, where a single design point is updated (usually using gradient information) from one iteration to the next, 

these algorithms do not require any gradient information and typically use a set of design points (generally referred to 

as a population) to find the optimum design. These methods, which are often impacted by natural events, offer the 

following benefits: they are easy to apply, very robust, and more likely to find a worldwide or nearly global optimum. 

They are also perfect for discrete optimization problems. The primary drawbacks of these algorithms are their high 

computational cost, limited issue size, poor constraint-handling skills, and limited ability to customize parameters for 

individual problems.  

Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995), which is based on a simplified social model, and 

the more well-known Genetic Algorithm (GA) (Holland, 1975), which was inspired by Darwin's theory of survival of 

the fittest, are currently two of the most popular evolutionary algorithms. The following algorithms are also included in 

this category: simulated annealing (Kirkpatrick, Gelatt, and Vecchi, 1983), evolutionary programming (Fogel, Owens, 

and Walsh, 1966), harmony search (Geem, Kim, and Loganathan, 2001), genetic programming (Koza, 1992), ant 

colony optimization (Dorigo, Maniezzo, and Colorni, 1996), and so on.  

The basic steps of the GA are shown in Fig. 3 below. The first step involves creating an initial population at random. 

Usually, the population size remains constant during the optimization study. Following that, parents are selected at 

random for reproduction, and the population is ranked based on each individual's fitness (objective function). The 

parent designs are selected in a way that makes it more likely that the higher ranked (fitter) individuals will be selected. 
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The next generation of patterns consists of kid designs, which are created by a cross

combines the parent designs. The process is carried again with the next generation and graded once more until 

convergence. Figure 3 illustrates the process for a beginning population of only four individuals. The child designs need 

to make it clear which parents were selected to

the components from the two parent designs using a single point cross

separated at random.  

However, PSO imitates, among other things,

swarm, converges on the ideal state by using data collected from each individual, referred to as a particle, as well as 

from the data obtained by the swarm as a whole. At the start of

distributed across the design space. Next, to change the position of every particle between design iterations, the 

following  

Figure 3:

update formula,  

                                                                                       

where i refers to the ith individual in the swarm, q refers to the q

individual at the qth iteration. The time increment 

random velocity vector that is updated at each iteration using

where r1 and r2 are random values between 0 and 1, c1 and c2 are known as trust parameters, and w is known as the 

inertia parameter. Furthermore, piis the ith particle's best point discovered so far, while pgis the swarm's finest point. 

The algorithm's search behavior is dictated by the inertia parameter w; higher values (about 1.4) lead to a more global 

search, while lower values (around 0.5) lead to a more localized search. The amount that the particle trusts the group 

(also known as the social memory) is indicated by the c2 trust parameter, while the c1 trust parameter reflects how 

much the particle trusts oneself (also known as the cognitive memory). According to the literature, c1 = c2 = 2. 

Ultimately, pg may be chosen to represent a "global" topology, 

swarm, or a "local" topology, in which the optimal point is derived from a limited subset of particles. 

In terms of parameters, the user must adjust w, c1, and c2 values, choose how many particles to in

and how many iterations to carry out. Five problem

most basic version of the algorithm (there are many more sophisticated variants). One of the main problems with all 

evolutionary approaches is that they all need problem
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The next generation of patterns consists of kid designs, which are created by a cross-over process that randomly 

igns. The process is carried again with the next generation and graded once more until 

convergence. Figure 3 illustrates the process for a beginning population of only four individuals. The child designs need 

to make it clear which parents were selected to create each child design. The children in Figure 3 are created by mixing 

the components from the two parent designs using a single point cross-over approach, in which the parent patterns are 

However, PSO imitates, among other things, the movements of a swarm of bees searching for food. The population, or 

swarm, converges on the ideal state by using data collected from each individual, referred to as a particle, as well as 

from the data obtained by the swarm as a whole. At the start of the procedure, a starting population is randomly 

distributed across the design space. Next, to change the position of every particle between design iterations, the 

Figure 3: Overview of a basic Genetic Algorithm 

                                                                                 (8) 

individual in the swarm, q refers to the qth iteration and vq
irefers to the velocity vector of the i

increment ∆t is typically taken as unity. Initially each particle is assigned a 

random velocity vector that is updated at each iteration using  

                                              (9) 

where r1 and r2 are random values between 0 and 1, c1 and c2 are known as trust parameters, and w is known as the 

inertia parameter. Furthermore, piis the ith particle's best point discovered so far, while pgis the swarm's finest point. 

rch behavior is dictated by the inertia parameter w; higher values (about 1.4) lead to a more global 

search, while lower values (around 0.5) lead to a more localized search. The amount that the particle trusts the group 

indicated by the c2 trust parameter, while the c1 trust parameter reflects how 

much the particle trusts oneself (also known as the cognitive memory). According to the literature, c1 = c2 = 2. 

Ultimately, pg may be chosen to represent a "global" topology, in which the optimal point is derived from the whole 

swarm, or a "local" topology, in which the optimal point is derived from a limited subset of particles. 

In terms of parameters, the user must adjust w, c1, and c2 values, choose how many particles to in

and how many iterations to carry out. Five problem-dependent parameters need to be adjusted by the user, even for this 

most basic version of the algorithm (there are many more sophisticated variants). One of the main problems with all 

volutionary approaches is that they all need problem-dependent parameter adjustment.  
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over process that randomly 

igns. The process is carried again with the next generation and graded once more until 

convergence. Figure 3 illustrates the process for a beginning population of only four individuals. The child designs need 

create each child design. The children in Figure 3 are created by mixing 

over approach, in which the parent patterns are 

the movements of a swarm of bees searching for food. The population, or 

swarm, converges on the ideal state by using data collected from each individual, referred to as a particle, as well as 

the procedure, a starting population is randomly 

distributed across the design space. Next, to change the position of every particle between design iterations, the 

 

refers to the velocity vector of the ith 

∆t is typically taken as unity. Initially each particle is assigned a 

where r1 and r2 are random values between 0 and 1, c1 and c2 are known as trust parameters, and w is known as the 

inertia parameter. Furthermore, piis the ith particle's best point discovered so far, while pgis the swarm's finest point. 

rch behavior is dictated by the inertia parameter w; higher values (about 1.4) lead to a more global 

search, while lower values (around 0.5) lead to a more localized search. The amount that the particle trusts the group 

indicated by the c2 trust parameter, while the c1 trust parameter reflects how 

much the particle trusts oneself (also known as the cognitive memory). According to the literature, c1 = c2 = 2. 

in which the optimal point is derived from the whole 

swarm, or a "local" topology, in which the optimal point is derived from a limited subset of particles.  

In terms of parameters, the user must adjust w, c1, and c2 values, choose how many particles to include in the swarm, 

dependent parameters need to be adjusted by the user, even for this 

most basic version of the algorithm (there are many more sophisticated variants). One of the main problems with all 
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By its very nature, the PSO method is an unconstrained optimization technique. This is another significant disadvantage 

of evolutionary algorithms, since it is a feature shared by the majority of them. Researchers have looked at a wide range 

of constraint-handling strategies to address this issue. Koziel and Michalewicz (1999) categorized constraint-handling 

strategies for evolutionary algorithms into three categories:  

Strategies that maintain feasibility,  

Strategies based on penalty functions, and 

Strategies that clearly distinguish between viable and infeasible solutions. and Other hybrid techniques. More recently, 

Sienz and Innocente (2008) classified constraint handling strategies for PSO as:  

Strategies that reject infeasible solutions (also known as a death penalty approach),  

Strategies that penalize infeasible solutions (also known as a penalty function approach), 

Strategies that preserve feasibility,  

Strategies that cut-off at the boundary, 

Strategies based on a bi-section approach and  

Strategies that repair infeasible solutions.  

Using a penalty function technique, where the objective function is punished for any violation of the constraints, is one 

of the most often used ways. Penalty functions are widely utilized due to their ease of implementation, generality, and 

historical usage with gradient-based optimization techniques. Although more sophisticated methods, such as those 

established by Poon and Joaquim (2007), Hamida and Schoenauer (2000), and Barbosa and Lemonge (2003), are still 

often used, static penalty parameters, such as those found in Eq. 6, are still commonly used. A bi-objective strategy, 

similar to the one used by Fletcher and Leyffer (2002) for gradient-based optimization, has been developed recently for 

addressing constraints. Considered is a bi-objective optimization problem (e.g., Surry and Radcliffe (1997) and Venter 

and Haftka (2008)) that minimizes both an objective function and a measure of the constraint violation.  

 

VII. DETERMINISTIC ALGORITHMS 

There are also many deterministic algorithms developed specifically to solve global optimization problems. An 

excellent survey of global optimization algorithms is provided by Neumaier (2004). Many of the global optimization 

algorithms are specialized to solve only a narrow class of problems. One popular general purpose deterministic global 

optimization algorithm is the DIRECT algorithm by Jones, Perttunen and Stuckman (1993). The DIRECT algorithm 

makes use of Lipschitzian optimization to locate promising subregions in the design space. Each of these subregions is 

then further explored using a local search technique. An interesting comparison of using multistart techniques versus 

the DIRECT global optimization algorithm is provided by Cox et al. (2001).  

 

VIII. CONCLUSION 

An overview of common optimization methods used in engineering optimization applications was given in this chapter. 

Both restricted and unconstrained optimization problems were taken into consideration, and the methods were 

categorized as either local or global algorithms.  

It is important for the designer to understand that there isn't a single optimization solution that can handle every 

optimization issue. Choosing the best algorithm for the task at hand will be made easier with some understanding of the 

many algorithms that are accessible. Here are some pointers for choosing an algorithm:  

1. Local algorithms work effectively in the following situations: when there are numerous design variables (more than 

50), when computationally costly studies are required, when numerical noise is not a significant issue, when gradients 

are easily accessible, and when local minima are not a concern.  

2. When numerical noise is severe, the gradient is absent, the objective and/or constraint functions are discontinuous, a 

global optimum is needed, optimization problems with fewer design variables (less than 50), where the analysis is 

computationally inexpensive, and for discrete and combinatorial optimization problems are all good candidates for 

global algorithms.  
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