

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 1, November 2024

A Review on Mental Health Tracker using **Machine Learning**

Prof. Borhade R. B¹, Abhang Vaishnavi Walmik², Gunjal Saurabh Sunil², Pawar Kalyani Sampat²

Assistant Professor, Department Of Computer Engineering¹ Students, Department of Computer Engineering²

Samarth College of Engineering and Management, Belhe, Junnar, Pune Maharashtra, India

Abstract: The major thing of this study is to use pictorial Machine Learning and Image Processing styles to identify internal health in the mortal body. Our system is an upgraded interpretation of former internal health discovery systems that did n't include live discovery or particular comforting, but this system includes live discovery and periodic analysis of workers, as well as detecting physical and internal health situations in them and furnishing proper internal health operation remedies via a check form. Our system is primarily concentrated on internal health operation and creating healthy and robotic work terrain for workers in order to get the most out of them during working hours.

Keywords: Facial Expressions, K Nearest Neighbour Classifier, Mental health, Mental Health Prediction

I. INTRODUCTION

In the modern world, mental health is a common phenomenon that influences people's responses to various events, including changes in behaviour and physiology.

However, if we focus on internal wellness for too long, it will affect our bodies. Early detection of internal health helps prevent many of the health conditions linked to it. One can see a pattern when an individual is in good internal condition. A commodity that affects our lives is mental health. There are many factors that put strain on us in our daily lives. A person's internal health may be influenced by their mortal surroundings, such as their home, workplace, or society. Palmer defines mental health as a complex cerebral and behavioural situation in which an individual's.

Sr No	Paper Title	Year	Author	Pros	Cons
1	An Emotional Feedback	2022	Mohamed	An innovative emotional	It simply uses
	Based on Facial Action		Soltani ; Hafed	feedback system based on	facial recognition
	Coding System for		Zarzour ; Mohamed	facial action coding	to evaluate
	MOOCs with		Chaouki	(FACS). The FACS system,	learners' mood
	Computer-Based		Babahenini ; Mahmo	which generates emotional	and level of
	Assessment		ud	feedback, is part of the Face	interest.
			Hammad ; Mohamm	Reader tool.	
			ad	based on a few clearly stated	
				didactic guidelines.	
2	Emotion Sense: Real-	2021	Andrada-Denisa	Using a Convolutional	Using a pre-
	time Emotional		Farcas ; Anca	Neural Network (CNN) to	trained model
	Feedback from the		Marginean	recognize facial expressions,	makes it
	Audience			the accuracy is increased by	challenging to
				71.162% by substituting	identify an
				linear SVM for softmax.	appropriate
				ASSANCY IN SOCI	parameter
				ISSN	combination and a
Copyright to IJARSCT DOI: 10.48175/IJARSCT-22036 2581-9429 206					

II. LITERATURE SURVEY

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 1, November 2024

					balanced network
					size.
3	Emotion Detection and	2021	Charvi Jain Kshitii	The Support Vector	Using SVM only
C	Characterization using		Sawant · Mohammed	Machine (SVM) method	does not produce
	Eacial Eastures		Rehman : Rajesh	aids in the recognition of	
	racial reatures		Kumar	and in the recognition of	as accurate
			Kuillai	Viale James method is used	predictions as
				viola Jones method is used	using a HOG Inter
				to identify the person's face	prior to
				and other features in the	classification.
				input image.	Without the HOG
					transform, this
					occurs because
					there are no
					distinguishing
					features.
4	Facial emotion	2020	Ma Xiaoxi ; Lin	Deep Boltzmann Machine	Compared to
	recognition		Weise ; Huang	(DBM) and Support Vector	other AUs, some
			Dongyan ; Dong	Machine (SVM) are used to	do significantly
			Minghui ; Haizhou	recognize facial emotions.	worse in
			Li	The system's performance is	experiments.
				enhanced by applying a	Because the
				straightforward fusion	dataset
				technique	distribution is so
					uneven and the
				$s(t) = \sum_{i=1}^{n} \alpha_{i} * s_{i}(t)$	frame samples are
				$\sum_{i=1}$	chosen at random
					from every video
					frame, learning
					from the entire
					dataset is not
					possible
5	Real-time emotions	2016	Vinícius	Intel RealSense 3D and	Because of
Ũ	recognition system	2010	Silva · Filomena	SVM are used to create	RealSense's
			Soares · João S	embedded systems and	progress some
			Esteves : Joana	come with libraries that can	expressions are
			Figueiredo · Celina	recognize emotions and	not available
			P. Leão	facial expressions	while others are
				ineral expressions.	identified with
					limited accuracy
6	Facial expression	2016	Borui	Multi-class SVM classifiers	When applied to
v	recognition using I RP	2010	Zhang:Gijangyjjan	using the Jananese female	damaged photos
	and IPO based on		Liu:Guogiang Via	facial expression (IAFEE)	the suggested
	Gabor wavelet		Liu, Ouoqialig Ale	database parform the	strategy
	transform			alassification The accuracy	significantly
	u ansionni			of Cohor LDD LO DCA	lowers both the
				UN GAUDI, LDP, LQ, PCA-	identification rate
				LDA, and 5 v M 18 98.57%.	identification rate
1		1		STREAM SCIENCE	and accuracy.

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 1, November 2024

7	An emotional feedback system based on a regulation process model for happiness improvement	2015	Yu-Heng Hung ; Yang-Yen Ou ; Ta-Wen Kuan ; Chin-Hui Cheng ; Jhing-Fa Wang ;'	By extracting useful information from users' social network content, the IERS evaluates users' emotional variations and semantic reflections on the regulation process model with the goal of providing users with relevant feedback.	Seven-type emotion recognition has a 50% accuracy rate and is limited to facial expression identification.
8	Online facial expression recognition based on combining texture and geometric information	2014	Ching-Hua Weng;Shang-Hong Lai	This online facial expression recognition system can automatically identify the beginning and the end of a face's emotion from a video by using texture and motion information that have been taken from the video.	In order to apply the algorithm, the experiment always requires a video; live sessions will not work.
9	Automated Alertness and Emotion Detection for Empathic Feedback during e-Learning	2013	S. L. Happy ; Anirban Dasgupta ; Priyadars hi Patnaik ; Aurobinda Routray	Through adequate communication and feedback, the system utilizes oscular parameters like PERCLOS and saccadic parameters to classify the user's emotion and alertness level. It also analyzes facial expressions to determine the user's emotional state.	The technology is insufficient because it can only analyze one face and generate one piece of data in the database at a time.
10	Comprehensive database for facial expression analysis	2000	T. Kanade, J. F. Cohn, and Y. Tian	Comparative studies of facial expression analysis are conducted using the CMU-Pittsburgh AU-Coded Facial Expression Image Database.	It can be tough to determine the accuracy of description, the transitions between expressions, and the differences between intentional and spontaneous expressions.

III. SYSTEM ARCHITECTURE

The system architecture and flow of the project are shown in the image below. The input is first pre-processed after being processed as text. A feature vector is generated out of that text with the help of a the dictionary. A mental health analysis is then carried out after an image is captured using a camera feed.

DOI: 10.48175/IJARSCT-22036

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 1, November 2024

Fig 1. System Architecture

This architecture represents an emotion detection and mental health monitoring system.

- User Registration: Users enter their personal information to register for the system, and a database contains their data.
- Questionnaire (MMSE): To evaluate cognitive function, users may take the Mini-Mental State Examination (MMSE) upon registration.
- Camera & CNN-based Emotion Detection: Convolutional Neural Network (CNN) algorithms are used to analyze user photos taken by a camera in order to identify emotions.
- NLP Analysis: User answers to extra questions are examined using Natural Language Processing (NLP).
- Emotion Detection: Both CNN and NLP analysis record any emotions that are identified.
- Graphical Display & Analysis: An average emotional status over the previous week is computed, and the observed emotion levels are graphically shown.
- **Taking Action:** The system may display counselling videos or give information on local hospital addresses for more assistance, depending on the user's emotional state.

System Modules:

1. Registration:

The user will provide personal data to register such as gender, age, etc.

2. Graphical Representation:

A graphical representation of the data will be shown.

3. Display Result:

- The outcome will be shown as a PDF.
- 4. Suggestions:

Algorithm

1. Raw data set: 4 columns (mental health Y/N) and 40,000 sentences

2. Pre-processing of data: Regular expressions and symbols are eliminated using the're' library. Lemmas are removed (Lexicon Normalization) using NLTK's WordNetLemmatizer. Elimination of multi-letter ambiguities: "noooo" is changed to "no."Eliminatingstop words resulted in a drop in both overall accuracy and the fl-score. **3. Word Dictionary:** A dictionary contains a list of words.

4. Vectorization is completed in Word2Vec.

Words are vectorized, with each vector denoting a mental health category.

Copyright to IJARSCT www.ijarsct.co.in DOI: 10.48175/IJARSCT-22036

209

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 1, November 2024

5. Training Model: CNN

The system is trained using CNN, after which it makes predictions about mental health.

6. Natural Language Processing (NLP):

Enables computers to comprehend spoken and written human language in order to analyze text, derive meaning, identify patterns, and produce new material.

IV. FUTURE SCOPE

1. Based on the text written on paper, we will introduce a feature that can also determine the user's mental health. 2. An organization can utilize this initiative to determine whether its personnel are happy with their jobs or in good mental health. Colleges can also utilize it to learn about students' mental health.

V. CONCLUSION

The Tension Detection System is safe since it keeps track of approved users' photos to predict their mental health. The photo is automatically taken based on a time interval after the authenticated user checks in. The obtained images are used to assess the user's mental health based on a few standard conversion and image processing procedures. The technology will then examine the mental health levels using machine learning algorithms, producing more effective results.

REFERENCES

[1] Palmer S 1989 The Health and Safety Practitioner, 8 16-18

[2] Ahuja R and Banga A 2019 International Conference on Pervasive Computing Advances and Applications – PerCAA 2019 125 349-353

[3] Bobade P and Vani M 2020 Proceedings of the Second International Conference on Inventive Research in Computing Applications (ICIRCA-2020) 51-58

[4] Vaikole S Mulajkar IS More A Jayaswal P and Dhas S 2020 International Journal of Creative Research Thoughts (IJCRT) 8 5 2239-44[5] Schmidt P Reiss A Duerichen R Marberger C and Laerhoven K V 2018 Proceedings of the 20th ACM International Conference on Multimodal Interaction 400-408

[5] Padmaja B Rama Prasad V and Sunitha K V N 2018 International Journal of Machine Learning and Computing 8 1 33-38

[6] Sandulescu V Andrews S Ellis D Bellotto N and Mozos O M 2015 International Work-Conference on the Interplay Between Natural and Artificial Computation 526-532

[7] Zhang X Xu C Xue W Hu J He Y and Gao M 2018 Sensors 2018 18 11 3886

