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Abstract: The paper works propose that uses a decomposed outer loop of a series cascade scheme to 

weave together a fractional Internal Model regulate (IMC) filter, inverse response, and dead-time 

compensator to regulate the non-minimum phase system. The outer loop process model is divided into two 

sections due to its higher-order nature. We call this process decomposition. For the inner loop and the first 

segment of the outer loop that has broken down, the traditional IMC controller is used. After the fractional 

filter, inverse response, and dead-time compensator in the IMC framework are held accountable, the 

controller setting for a further decomposed portion of the outer loop is obtained. The benefits of this 

recommended method are starting to outweigh those of the current control systems. The system's stability is 

assessed using the Riemann sheet principle. In addition, a robustness test is conducted using sensitivity 

analysis to look at the effectiveness of the suggested controller. The value of the suggested controller is 

illustrated by two case studies 
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I. INTRODUCTION 

Cascade control performs more effectively than a single loop feedback control. Therefore, the dynamics and actuator 

nonlinearities cascade structure with flow and pressure loops are utilized in the sluggish processes. The inner and outer 

loops constitute cascade control. The negative impact of the inner loop influences the outer loop's input in cascade 

control. In a cascade control scheme, the outer loop monitors the setpoint while the inner loop rejects the disturbances. 

There are two classifications for cascade controls: series and parallel. Through the use of a controlled variable, cascade 

regulates the outer loop outcomes in a series [1, 2] recommended to improve the cascade control system. Better cascade 

control is provided, based on the outer loop decomposition methodology [3]. The unstable system's enhanced cascade 

control is discussed [4]. Additionally, a proportional integral–proportional–derivative is proposed [5] for process 

integration within a framework of a single feedback loop. To build the controller in a cascade architecture for 

combining unstable and stable processes, a combination arrangement is addressed [6]. In process industries, however, a 

nonminimum phase (NMP) zeros method is ubiquitous. On the other hand, certain approaches demonstrate their first 

impact with respect to zero frequency gain in process industries. They define it as an NMP system. Open loop zeros in 

the plant transfer function are the source of the state-of-the-art for the inverse response. It integrates limits on the 

robustness of the closed-loop system and shows how gain margin is restricted [7]. Surprisingly a reformatory signal is 

produced by an inverse response compensator as the inverse response characteristic decreases. For NMP systems, the 

proportional-integral-derivative (PID) controller is automatically utilized [8]. The PID controller's universality extends 

to fractional order and is not limited to integer order. A PID controller based on fractional filters has been used recently 

[9]. Postponed There was discussion of Bode's ideal transfer function methodology with fractional order controller [10]. 

In addition, [11] describes the cascade fractional PI controller. However, the improved cascade control performance is 

due to the tuning strategy. One typical tuning technique is Internal Model Control (IMC) [1]. The fractional filter 

method based on IMC is used [12]. A fractional IMC filter-based cascade control scheme was proposed [13]. A new 

IMC technique for tuning cascade control systems is proposed [14]. The genetic algorithm is utilized for cascade 

control [15]. Based on fractional filters, the IMC series cascade control with optimization technique was originally 

presented [16]. 
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Primarily, an inverse response compensator and fractional filter combined with a series cascade scheme has been 

utilized in the IMC environment. However, there is not an obvious method that integrates the derivative controller with 

the NMP system's outer loop process model. This paper offers an innovative perspective into how an NMP system's 

feedback derivative controller and outer loop process model are connected. The benefit of this approach is that it 

exhibits improved performance without compromising robustness. This proposed structure further improves the set 

point filter prevention. Furthermore, both controllers are IMC for ease of use. Moreover, the stability of the proposed 

method is evaluated using the Riemann sheet theory.  

The NMP mechanism is introduced in the paper's opening paragraph. Preliminaries are presented in Section 2. In 

Section 3, the proposed work is illustrated. Section 4 has the simulation and Results. Section 5 contains the conclusion. 

 

II. PRELIMINARIES 

This section covers the mathematical fundamentals needed to carry out the theoretical development and application of 

the suggested controller to real-world issues. 

Series Cascade Control 
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Fig.1 Traditional series cascade scheme 

)(1 sC , )(2 sC are the outer and inner loop controller shown in Fig. 1, it is also termed as master and slave controller. It 

comprises are two processes )(1 sP , )(2 sP with their process model )(
~
1 sP and )(

~
2 sP . Here ,1r ,1y 1d and ,2r ,2y 2d are 

the input, output and disturbances of inner and outer loop. The transfer function of both loops can be determined easily 

which can be written as [7] 

��(�)= ��(�)��(�)�� + (1 − ��(�)��(�))��.  

��(�)= ��(�)��(�)��(�)��(�)�� + (1 − ��(�)��(�)) 

(1 − ��(�)��(�)��(�)��(�)�� + ((1 − ��(�)��(�)��(�)��(�))��. 

 

 

III. PROPOSED WORK 

Proposed series cascade control scheme: Section II (A) discusses the traditional series cascade control scheme. 

However, it loses out on excellent closed-loop performance if there is a lot of dead time and NMP zeros in the outer 

loop. The proposed control scheme is shown in Fig. 2. The deconstructed outer loop is used to weave together the 

higher order fractional filter, inverse response compensator, and dead-time compensator in that system.  

��(�)= ��(�)��(�)��(�){��(�)�(�)}��(�)+ (1 − ��(�)��(�)) 

(1 − ��(�)��(�)��(�){��(�)�(�)�� + ((1 − ��(�)��(�)��(�)��(�)�(�))��. 
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Fig. 2 Proposed series cascade scheme 
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Fig. 3 Modified version of proposed scheme 

In IMC context inner loop controller can be written as [1] 

��(�)=
�(�)

���
� (�)

                                                                                           (3.1) 

Here �(�)=
��

��

�
�
����

��

��
��

�
�
����

��

is a low pass filter while ���
� (�)interprets the minimum phase part of the process model. Now 

from Fig. 2 output of the inner loop becomes,  
��(�)

��(�)
= ���(�)= ��(�)��(�) 

(3.2) 

Modified version of proposed scheme is displayed in Fig. 3 

��
′ = ���(�)�� (3.3) 

Now output of the decomposed part of outer loop  

��(�)

��
′(�)

= ���
(�)= ��(�)��

′  
(3.4) 

Simplified version of proposed scheme is shown in Fig. 4 In IMC context inner loop controller can be written as [1] 

��(�)=
��(�)

���
�(�)

(3.5) 

Afterward overall plant transfer function transfer function becomes,  

�(�)= ���
(�)

��(�)

��(�)
 

(3.6) 

Now utilize generalized controller transfer function [17] 

�(�)=
���(�)����

��(�)����[�(�)����(�)− ���(�)]− 2�� − ��(�)���(�)(1 − ����)
 

(3.7) 
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Fig. 4 Simplified version of proposed scheme 

Design of �� with FOPDT model:  

��(�)=
���

����

(1 + ���)
 

Here 2K 2L and 2T  shows process gain, delay time and time constant of inner loop. The inner loop IMC filter 

(Seborg,2004) 

��(�)=
1

(��� + 1)�
 

Where 2 is the tuning parameter. r is chosen in such a way to make controller proper. According to IMC concept, the 

process model is decomposed into two parts minimum phase part ���
�(�)=

��

�����
 and non-minimum phase part sLe 2 . 

After utilization equation (3.1) the inner loop IMC controller becomes  

��(�)=
1 + ���

��(��� + 1)
 

(3.8) 

 Here 2 can be tuned on the basis of maximum sensitivity [19].  

�� =
−0.7289� � + 1.55

� � − 1.006
�� 

(3.9) 

The outer loop controllers are decomposed into two parts i.e., [18]        

��(�)=
��(����)

�
�����and ��(�)=

��

�
 

Design of �� with IO (Integer order) model: 

��(�)=
��
�

 

Since output of the inner loop transfer function acts as a input to the integer order controller. After utilization equation 

(3.2) the plant transfer function becomes  

��
′(�)=

���
����

�(��� + 1)
 

(3.10) 

After utilization equation (3.4) the controller transfer function for first decomposed component of outer loop,     

��(�)=
�(��� + 1)

��(��� + 1)
 

(3.11) 

  Here 3 is a tuning parameter which can be tuned by equation (3.8). 

After utilization equation (3.3) the output of the first decomposed outer loop becomes   

���(�)=
�����

��� + 1
 

After utilization equation (3.5) the overall plant transfer function becomes  

�(�)=
��(1 − ��)����

�(��� + 1)
 

(3.12) 

Here 21 LLL   
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After the utilization of equation (3.6), the outer loop controller transfer function with higher-order fractional IMC filter 

and higher-order time delay approximation becomes,  

�(�)=
�(��� + 1)�1 +

��

�
+

����

��
�

������� + 2����� +
���� ��

��
+ �� �

���

�
+

���

��
−

���

��
�+ �� �

��

�
−

��

��
− �� −

��

�
�− � �� +

�

�
+ ��

   (3.13) 

Subsequently, separate the equation (3.12) into fractional filter and PID controller then it becomes,  

�(�)=

(���
� + �) �

�

�
�1 +

�

�� �⁄
+

��

�
��

������� + 2��� +
���� ��
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Here  and  are the fractional-filter parameters which can be tuned by Bode’s ideal transfer function [17], 

� =
� − ��

�

�

− 1� =
1

(���)���
 

 is another tuning parameter which can be tuned by [19]  

� = �� �1 − � (1 −
�

��
)��

�
�

���. 

Design of ��(�):  

The design of the inner loop controller is the same as the previous case, 

��(�)=
1 + ���

��(��� + 1)
 

After utilization equation (3.2) output of the inner loop becomes  

���(�)=
�����

��� + 1
 

Design of ��(�):  

After utilization equation (3.10) the plant transfer function becomes  

    ��
′(�)=

���
����

(��� + 1)(��� + 1)
(3.14) 

After utilization equation (3.11) the controller transfer function for first component of outer loop becomes  

��(�)=
�(��� + 1)(��� + 1)

��(��� + 1)
 

(3.15) 

 

After utilization equation (3.6) the overall plant transfer function becomes  

�(�)=
��(1 − ��)����

�(��� + 1)(��� + 1)
 

(3.16) 

Consequently, controller design in IMC framework is presented previously. After utilization of generalized equation 

(3.7) for controller design, then it becomes  

�(�)=

(���
� + ��(�� + ��)+ �)�

�

�
�1 +

�

�� �⁄
+
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�
��

������� + 2��� +
���� ��
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���

�
+

���

��
−

���

��
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��

�
−

��

��
− �� −

��

�
�− �� +

�

�
+ ��

          (3.17) 

 

IV. SIMULATION AND RESULTS 

This section limits the evaluation of the suggested scheme's effectiveness to processes with inverse responses and dead 

times. Process parameter variations are reversed in case studies with nominal and +10% values. Bode's ideal transfer 
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function is used to select the fractional filter parameter 

used to evaluate the phase margin [20]. 

Case Study I 

A double integrating process transfer function with inverse response plus dead time is considered. Which can be written 

as [21] 

After utilization equation (3.8) the inner loop controller transfer function becomes, 

Here 4.02  which can be chosen on maximum sensitivity

becomes  

After utilization of equation (3.11) the controller transfer function for 

After that utilization of equation (3.12) the overall plant transfer function becomes,

                                                                         

The recommended controller settings for the outer loop in the fractional IMC framework can be obtained via equation 

3.13), 





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In Fig.5 shows that the proposed control scheme has lees magnitude

disturbances. Table 1 shows transient response for double integrating process.

Fig. 5 Comparative study of for double integrating process

Table 1: Transient response for double integrating process
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function is used to select the fractional filter parameter  and  . The stability inequality 2PM 

integrating process transfer function with inverse response plus dead time is considered. Which can be written 

��(�)=
(1 − 0.7�)���.�

��
 

��(�)=
���.�

� + 1
 

After utilization equation (3.8) the inner loop controller transfer function becomes,  

��(�)=
1 + �

0.4� + 1
 

which can be chosen on maximum sensitivity sM . After utilization equation (3.10) the plant transfer 

��
′(�)=

���.��

�(0.4� + 1)
 

After utilization of equation (3.11) the controller transfer function for 3P becomes  

��(�)=
�(0.4� + 1)

0.2� + 1
 

fter that utilization of equation (3.12) the overall plant transfer function becomes, 

    �(�)=
(1 − 0.7�)���.��

�(� + 1)
                                                       

The recommended controller settings for the outer loop in the fractional IMC framework can be obtained via equation 









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In Fig.5 shows that the proposed control scheme has lees magnitude jump in nominal and +10% mismatch with 

disturbances. Table 1 shows transient response for double integrating process. 

 
Fig. 5 Comparative study of for double integrating process 

Transient response for double integrating process 

ISSN (Online) 2581-9429 

  

Technology (IJARSCT) 

Reviewed, Refereed, Multidisciplinary Online Journal 

 257 

)21arcsin(2 .maxS  is 

integrating process transfer function with inverse response plus dead time is considered. Which can be written 

. After utilization equation (3.10) the plant transfer 

                     (4.1)  

The recommended controller settings for the outer loop in the fractional IMC framework can be obtained via equation 

           (4.2) 

jump in nominal and +10% mismatch with 
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Stability analysis: 

The Riemann surface is now crucial to the stability analysis of the proposed structure. The FOMCON toolbox in 

MATLAB is used to verify the graphical valuation. The stability analysis of the double integer order plus time delay 

system appears globally as 

�(�)= 1 + ������� + 2����� +
������

12
+ �� �

���

2
+
���

12
−
���

12
� + �� �

��

2
−
��

12
− �� −

��

2
� − � �� +

�

2
+ �� 

Choose  � = ��, Where ��.��� = � 

�(�)= 1 + ����� + 2����� + 0.000067����� + 0.0023����� − 0.013����� − 0.4�����. 

Then, instability is revealed by the roots of the natural degree quasi characteristic polynomial inside the Riemann sheet, 

whereas stability is revealed by the roots outside the Riemann sheet. Every root in Fig. 6 is located outside of the 

Riemann sheet.  

 
Fig. 6 Stability analysis of double integrating system 

 
Fig. 7 Robustness analysis of proposed controller for double integrating process 

Robustness analysis:  

 Nominal Case  +10% mismatch case 

Method Peak 

overshoot 

ratio, % 

Rise 

time, s 

 

IAE ISE Peak 

overshoot 

ratio, % 

Rise 

time, s 

IAE ISE 

Proposed controller 1.18 9.4 0.17 0.0031 1.29 4.6 0.04 0.00 

Kaya (2020) 1.53 2.45 0.069 0.027 1.6 3.1 0.13 0.017 

Begum et al. (2017) 1.68 2.32 3.4 11.92 1.7 2.2 3.6 13.5 
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Furthermore, any variation in the dynamics of the process and disturbances can alter the limited description of the 

feedback system. One way to write the universal sensitivity function is as [20]. 

�(�)=
1

1 + ��(�)�(�)
 

(4.3) 

Fig. 7 shows the graphical explanation of the suggested controller's robustness analysis. In nominal and 10% model 

mismatch scenarios, the provided controllers show a reduced increase in maximum sensitivity. 

Case study 2 

Consider a higher order process transfer function with inverse response and dead-time [21]. 

�� =
(1 − 0.5�)���.��

�(0.5� + 1)(0.4� + 1)
�� =

0.5������

(0.1� + 1)
 

After utilization equation (3.1) the inner loop controller transfer function becomes 

��(�)=
0.1� + 1

0.5(� + 1)
 

After that utilization of equation (3.14) the plant transfer function becomes,  

��
′ (�)=

���.��

(� + 1)(0.4� + 1)
 

The controller transfer function is obtained after utilization of equation (3.15), 

��(�)=
(� + 1)(0.4� + 1)

(0.2� + 1)
 

Now the output of the first decomposed part of outer loop, 

���
(�)=

���.��

0.2� + 1
 

After utilization equation (3.16) the overall plant transfer function becomes,  

�(�)=
(1 − 0.5�)���.��

�(0.5� + 1)(0.2� + 1)
 

(4.4) 

 
Fig. 8 Relative analysis of proposed controller for higher order process 

After utilization of equation (3.17) structure of controller transfer function becomes, 
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�(�)=
0.20�� + 0.9�� + �

0.25��.�� + ��.�� + 0.0020�� + 0.05�� + 0.045� − 0.95
�0.35+

0.39

�
+ 0.038�� 

(4.5) 

Fig. 8 indicates that after +10% mismatch proposed control organisation is verified convincible outcomes in terms of 

overshoot and undershoot. Table 2 shows transient response for double integrating process. 

 Nominal Case        +10% mismatch case 

Method Peak 

overshoot 

ratio, % 

Rise 

time,s 

IAE ISE Peak 

overshoot 

ratio, % 

Rise time, 

s 

IAE ISE 

Proposed controller 1.17 14.3 1.3 1.7 1.32 33 3.4 11.72 

Kaya (2020) 1.27 10.7 0.16 0.027 1.43 17 0.76 0.58 

Begum et al. (2017) 1.4 2.3 0.651 0.42 1.5 7.5 2.5 6.25 

Table 2: Transient response and performance indices for higher order integrating process 

 
Fig. 9 Stability analysis of higher order process 

 
Fig. 10 Robustness analysis of proposed controller for higher order process 

Stability analysis: 

The detailed description of stability analysis is presented in case study 1. Likewise, the specific arrangement of the 

fractional characteristic polynomial related the closed-loop of higher order integrating process is demonstrated 

�(�)= 1 + ��.�� + 2��.�� + 0.000067�� + 0.0023�� − .013�� − 0.4�. 
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The roots of natural degree quasi characteristic polynomial inside the Riemann sheet then reveal instability, while roots 

lie outside the Riemann sheet then reveal the system's stability. In Fig. 9 all the roots are lying outside the Riemann 

sheet. 

 

Robustness analysis:  

The graphical investigation of the suggested  controller for robustness can be establish in   Fig. 10 For the determination 

of roboustness utlize the equation (4.3), (4.4),(4.5). The presented controllers is demonstrated a smaller peak for 

nominal and 10% model mismatch cases. 

 

V. CONCLUSION 

This work uses a decomposed outer loop process model in series cascade control, constructed together with a fractional 

IMC filter, inverse response, and dead-time compensation. The inner loop and the first decomposed component of the 

outer loop are designed using the traditional integer order IMC controller. The outer loop controller is designed using a 

higher-order fractional IMC filter with an inverse and dead-time compensator. The outer loop controller has shown 

better performance, primarily in dead time behavior correction and inverse response. A few typical plant models from 

the literature have been used for the simulation work in order to emphasize the advantages of the proposed controller 

design. Employing the Riemann sheet principle, stability analysis has been performed. Sensitivity analysis was utilized 

as well to figure out the efficiency of the proposed controller. Finally, this work concludes 
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