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Abstract: The study represents a significant advancement in cardiovascular disease detection by 

employing deep learning techniques, particularly focusing on Electrocardiogram (ECG) data analysis. By 

utilizing transfer learning with pretrained deep neural networks like SqueezeNet and AlexNet, alongside a 

novel convolutional neural network (CNN) architecture tailored for cardiac abnormality prediction, the 

researchers demonstrated remarkable accuracy in identifying four major cardiac conditions. This approach 

not only capitalizes on the strengths of deep learning but also addresses the challenges posed by limited 

medical datasets, showcasing the potential of artificial intelligence in revolutionizing healthcare 

diagnostics. 

The results are highly promising, with the proposed CNN model outperforming previous methods, achieving 

exceptional accuracy, recall, precision, and F1 score. Furthermore, employing the CNN model for feature 

extraction in tandem with traditional machine learning algorithms highlights its versatility and potential for 

integration into clinical practice. Overall, this study underscores the pivotal role of deep learning in early 

detection and classification of cardiovascular diseases, offering healthcare professionals a powerful tool to 

improve patient outcomes and save lives 
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I. INTRODUCTION 

According to the World Health Organization (WHO), cardiovascular diseases, also known as heart diseases, are the 

primary cause of death globally. They claim approximately 17.9 million lives each year, accounting for 32% of all 

deaths worldwide. Heart attacks, or myocardial infarctions (MI), are responsible for about 85% of all heart disease-

related deaths. Detecting cardiovascular disease at an earlier stage can save many lives. Various techniques, such as 

electrocardiogram (ECG), echocardiography (echo), cardiac magnetic resonance imaging, computed tomography, and 

blood tests, are used in the healthcare system to detect heart diseases. The ECG is a widely used, cost-effective, and 

noninvasive tool for measuring the heart's electrical activity. It helps identify heart- related cardiovascular diseases. 

However, the manual process of interpreting ECG waves can lead to inaccurate results and is time-consuming. The 

advancement of artificial intelligence in healthcare offers great potential to reduce medical errors. Machine learning and 

deep learning techniques can be used for automatic prediction of heart diseases. These methods require experts to 

extract and select the appropriate features before applying the classification phase. Feature extraction involves reducing 

the number of features in a dataset by transforming or projecting the data into a new lower-dimensional feature space 

while preserving the relevant information. 

The idea behind feature extraction involves creating a fresh set of features that are a combination of the original 

features, resulting in a lower-dimensional space that captures most, if not all, of the information present in the input 

data. The principal component analysis (PCA) is the most well-known technique for feature extraction. On the other 

hand, feature selection aims to eliminate irrelevant and redundant features (dimensions) from the training data set in 

machine learning algorithms. There are various methods available for feature selection, which can be classified as 

unsupervised or supervised. Unsupervised methods do not require the output label for feature selection, while 

supervised methods utilize the output label. Within supervised feature selection, there are three methods: the filter 

method, the wrapper method, and the embedded method. 
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Fig. 1. Abstract concept of machine learning and deep learning. 

Machine learning models, including decision tree (DT), Naïve Bayes (NB), K-nearest neighbors (K-NN), and neural 

network (NN), were evaluated on the UCI Cleveland heart disease dataset. The study found that DT achieved the 

highest accuracy of 89%. Dissanayake and Md Johar investigated the impact of feature selection techniques on machine 

learning classifiers for heart disease prediction using the same dataset. Various methods such as ANOVA, Chi-square, 

forward and backward feature selection, and Lasso regression were examined. Six classifiers, namely DT, random 

forest (RF), support vector machine (SVM), K-NN, logistic regression (LR), and Gaussian NB (GNB), were applied. 

Through feature selection, the classification accuracy improved significantly, with the highest accuracy of 88.52% 

achieved using the backward feature selection method with the DT classifier. Another study focused on NB, SVM, and 

DT algorithms for heart disease detection using ten-fold cross-validation on the South African heart disease dataset 

comprising 462 instances. NB showed the best performance with an accuracy rate of 71.6%, sensitivity of 63%, and 

specificity of 76.16%. Kim et al. compared NN, SVM, and classification based on multiple association rules (CMAR), 

DT, and NB algorithms for cardiovascular disease prediction using ultrasound images of carotid arteries (CAs) and 

heart rate variability (HRV) datasets. The combined features from the CAs+ HRV dataset yielded higher accuracy 

compared to separate features of CAs and HRV. SVM and CMAR classifiers outperformed others with accuracies of 

89.51% and 89.46%, respectively. Additionally, deep learning, a subfield of machine learning, automatically extracts 

crucial features and patterns from training datasets for classification without external intervention. 

 

II. LITERATURE REVIEW 

Numerous studies have been carried out to automatically predict cardiovascular diseases using machine learning and 

deep learning techniques with ECG data as digital or image representations. Bharti et al. [28] conducted a comparison 

between machine learning and deep learning methods on the UCI heart disease dataset to predict two classes. The 

deep learning approach achieved the highest accuracy rate of 94.2%. Their deep learning model architecture included 

three fully connected layers: the first layer with 128 neurons, followed by a dropout layer with a rate of 0.2, the second 

layer with 64 neurons, followed by a dropout layer with a rate of 0.1, and the third layer with 32 neurons. Machine 

learning methods, combined with feature selection and outlier detection, achieved accuracy rates as follows: RF at 

80.3%, LR at 83.31%, K-NN at 84.86%, SVM at 83.29%, DT at 82.33%, and XGBoost at 71.4%. Research in 

concluded that deep learning has shown to be a more accurate and efficient technology for various medical issues such 

as prediction, potentially replacing traditional machine learning based on feature engineering. Kiranyaz et al. introduced 

a CNN with three layers of adaptive one- dimensional (1-D) convolution layers. This network was trained on the MIT-

BIH arrhythmia dataset to classify long ECG data streams, achieving accuracy rates of 99% and 97.6% in classifying 

ventricular ectopic beats and supraventricular ectopic beats, respectively. Additionally, the study in [31] presented a 

CNN with three 1-D convolution layers, three max- pooling layers, one fully connected layer, and one softmax layer. 

The filter size for the first and second convolutional layers was set to 5, and a stride of 2 was used for the first two max-

pooling layers. They achieved an accuracy rate of 92.7% in classifying EsCG heartbeats using the MIT-BIH arrhythmia 

dataset 

 

III. PROPOSED SYSTEM 

The CNN model proposed consists of various layers, including 2-D convolutional layers, fully connected layers, max-

pooling layers, leaky ReLU layers, batch normalization layers, dropout layers, depth concatenation layers, and a 

softmax layer. In total, there are 38 layers. The architecture of this model is depicted in Figure 4. Additionally, the 

proposed CNN model comprises two branches, namely the stacked branch and the full branch, which aid in extracting 
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more representative features. The input image size accepted by the model is 227x227x3, and it flows into both branches 

simultaneously. 

The stack branch is composed of three stacked 2-D 3x3 convolutional layers. Each of these layers is followed by a 

leaky ReLU layer, a batch normalization layer, and a max-pooling layer. The leaky ReLU layer utilizes a leaky ReLU 

activation function with a scale of 0.1, which helps address the issue of dying neurons. The batch normalization layer 

normalizes the inputs for each minibatch, resulting in faster model training and increased accuracy. The max-pooling 

layer applies the max-pooling operation to the feature map, reducing its spatial size and the number of parameters and 

the computational cost in the model. The max-pooling layers in this branch have a filter size of 6x6 and a stride of 3. 

For the first, second, and third convolutional layers,  64,  128,  and  224  filters  are  employed, respectively. The 

output size at the end of the stack branch is 2x2x224. Conv04 is a 32x2x2 convolutional layer with a stride of 1 and a 

padding of 1, while conv05 is a 64x3x3 convolutional layer with a stride of 2 and a padding of 2. The feature maps of 

these two convolutional layers are combined to create a feature map of 2x2x96. Following the combination of features, 

a dropout layer is utilized to diminish the impact of correlated features and prevent overfitting. 

Fig. 2. Example of a convolution operation. 

The outputs from the two branches are merged to form a feature map of 2x2x320. Subsequently, a dropout layer is 

introduced to address overfitting in the model. An 11-convolutional layer with 256 filters is included to enhance the 

nonlinearity of the model and decrease the depth or quantity of feature maps to lower computational expenses. A fully 

connected layer with 512 neurons is integrated to reinforce the classification process. For the final output, a fully 

connected layer with four neurons corresponding to the four classes for classification is added, followed by a softmax 

layer to obtain the predicted output. The evaluation of the trained network for the proposed CNN model is detailed. 

The diagram illustrating the application of the proposed CNN model for the classification of ECG images of cardiac 

patients is presented in Fig. 5. Initially, the input images undergo preprocessing steps such as cropping, resizing, and 

augmentation. Subsequently, the preprocessed images are stored in the image datastore. The proposed model is trained 

using the specified training parameters with the ECG images stored in the image datastore. The model learns the 

features and adjusts its parameters accordingly. Upon completion of training, the model is prepared to evaluate ECG 

images to classify cardiac abnormalities into one of the four categories: NP, AH, MI, and H. 

 

IV. METHODS 

4.1 Convolutional Neural Networks (CNN) 

In the domain of deep learning, a Convolutional Neural Network (CNN) is a specialized type of artificial neural 

network that is specifically designed for image classification and processing. The neurons within CNNs are organized 

in three dimensions: height, width, and depth (channel). For instance, an input image may have dimensions of 

227x227x3, indicating that the width and height of the image are both 227, while the depth (channel) is 3. The primary 

objective of CNNs is to extract significant features from the input images. The two key components of CNNs are the 

convolutional layers and pooling layers. The upper layers of CNNs can consist of fully connected layers, and the final 

layer typically employs a sigmoid or softmax activation function to obtain the predicted output. The convolution 

process, which utilizes convolutional layers, involves applying a filter or kernel to the input data to generate a feature 

map that represents the detected features of the input. This process entails sliding the filter across the input and 

performing matrix multiplication at each position, with the results being summed onto the feature map. Figure 2 

provides a simple example of a convolution process for an input with a depth of 1. It is important to note that the 

convolution process is linear. To introduce nonlinearity to the output, an activation function layer, such as ReLU or its 
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variations, is applied after the convolution layer. Following the convolution layer, a pooling layer, such as a max-

pooling layer, can be utilized to downsample the feature map and reduce computational costs. Figure 3 illustrates a 

straightforward example of max-pooling for an input with a depth of 1. 

 

 

 

 

 

Fig. 3. Example of 2 × 2 max-pooling with stride = 2. 

 

4.2 Pretrained Deep Learning Models 

The utilization of pre-trained deep neural networks (NNs) extends to transfer learning, feature extraction, and 

classification. This article employs low-scaled SqueezeNet and AlexNet pre-trained convolutional neural network 

(CNN) models that can run efficiently on a single CPU for transfer learning and feature extraction purposes 

Transfer learning is a widely adopted strategy involving pre-trained deep NNs when applied to a new dataset. 

Leveraging a pre-trained network that has already acquired a diverse set of features can prove advantageous for 

transferring knowledge to similar tasks. The majority of pre-trained networks have undergone training with over a 

million images and possess the capability to classify images into 1000 object classes. When implementing transfer 

learning, the final layers of the pre-trained network are substituted with new layers to capture the specific features of the 

new dataset. Subsequently, the model undergoes fine-tuning by training it on a fresh training dataset with tailored 

parameters, followed by evaluating its performance on a new test dataset. 

Pretrained deep NNs can also serve as an efficient feature extraction tool, eliminating the need to invest time and effort 

in training from scratch. In this study, features extracted from the pre-trained networks are utilized to train conventional 

machine learning classifiers, such as SVM, K-NN, DT, RF, and NB. Further elaboration on the utilization of pretrained 

networks is provided in the subsequent sections. 

 

4.3 Proposed CNN Architecture 

The CNN model proposed consists of various layers, including 2-D convolutional layers, fully connected layers, max-

pooling layers, leaky ReLU layers, batch normalization layers, dropout layers, depth concatenation layers, and a 

softmax layer. In total, there are 38 layers. The architecture of this model is depicted in Figure 4. Additionally, the 

proposed CNN model comprises two branches, namely the stacked branch and the full branch, which aid in extracting 

more representative features. The input image size accepted by the model is 227x227x3, and it flows into both branches 

simultaneously. 

The stack branch is composed of three stacked 2-D 3x3 convolutional layers. Each of these layers is followed by a 

leaky ReLU layer, a batch normalization layer, and a max-pooling layer. The leaky ReLU layer utilizes a leaky ReLU 

activation function with a scale of 0.1, which helps address the issue of dying neurons. The batch normalization layer 

normalizes the inputs for each minibatch, resulting in faster model training and increased accuracy. The max-pooling 

layer applies the max-pooling operation to the feature map, reducing its spatial size the number of parameters, and the 

computational cost in the model. The max-pooling layers in this branch have a filter size of 6x6 and a stride of 3. For 

the first, second, and third convolutional layers, 64, 128, and 224 filters are employed, respectively. The output size at 

the end of the stack branch is 2x2x224. Conv04 is a 32x2x2 convolutional layer with a stride of 1 and a padding of 1, 

while conv 05 is a 64x3x3 convolutional layer with a stride of 2 and a padding of 2. The feature maps of these two 

convolutional layers are combined to create a feature map of 2x2 x96. Following the combination of features, a dropout 

layer is utilized to diminish the impact of correlated features and prevent overfitting. 

The outputs from the two branches are merged to form a feature map of 2x2x320. Subsequently, a dropout layer is 

introduced to address overfitting in the model. An 11-convolutional layer with 256 filters is included to enhance the 

nonlinearity of the model and decrease the depth or quantity of feature maps to lower computational expenses. A fully 

connected layer with 512 neurons is integrated to reinforce the classification process. For the final output, a fully 
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connected layer with four neurons corresponding to the four classes for classification is added, followed by a softmax 

layer to obtain the predicted output. 

The diagram illustrating the application of the proposed CNN model for the classification of ECG images of cardiac 

patients is presented in Fig. 4. Initially, the input images undergo preprocessing steps such as cropping, resizing, and 

augmentation. Subsequently, the preprocessed images are stored in the image data store. The proposed model is 

trained using the specified training parameters with the ECG images stored in the image data store. The model learns 

the features and adjusts its parameters accordingly. Upon completion of training, the model is prepared to evaluate ECG 

images to classify cardiac abnormalities into one of the four categories: NP, AH, MI, and H. 

Fig. 4. Representation architecture of the proposed CNN model. 
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V. EXPERIMENTS 

5.1 ECG Images Dataset of Cardiac Patients 

The methods mentioned were validated using the ECG Images dataset of cardiac patients [23]. This dataset comprises 

928 unique patient records categorized into 4 distinct classes, as outlined in Table II. These classes include NP, AH, 

MI, and H. MI. In Fig. 6, there are examples of samples from this dataset. An NP refers to a healthy individual without 

any heart irregularities. An AH (arrhythmia) occurs when the heart's electrical impulses are too fast, too slow, or 

irregular, resulting in an irregular heartbeat. MI, also known as a heart attack, happens when blood flow in the heart's 

coronary artery decreases or stops, leading to heart muscle damage. Patients classified as H. MI have recently recovered 

from a heart attack or MI. 

Fig. 5. Schematic of using the proposed CNN model for ECG images of cardiac patients’ classification. 

 

5.2 Experimental Settings 

Preprocessing. As illustrated in Figure 6, the ECG images within the dataset include header and footer information that 

is irrelevant to the necessary features. Consequently, cropping has been implemented on all images to concentrate on 

the essential features, as depicted in Figure 7. Furthermore, all ECG images were resized to a uniform resolution of 227 

x 227 with 3 channels (RGB) before commencing model training. 

TABLE II:PUBLIC ECG IMAGES DATASET DESCRIPTION 

No Class Number of Images 

1 Normal Person 284 

2 Abnormal Heartbeat 233 

3 Myocardial Infarction 239 

4 History of Myocardial Infarction 172 

Data augmentation. To enhance the robustness and accuracy of the developed model, data augmentation was utilized on 

the dataset. This process aids in increasing the number of images in the dataset and mitigating the impact of training the 

model on an imbalanced dataset. Three augmentation techniques (rotation, flipping, and translation) were applied to the 

dataset, resulting in a total of 4700 images. 

Deep learning training parameters. Due to the computational intensity of hyperparameter optimization, all experiments 

were conducted using the training parameters outlined in Table III. The Adam optimizer was employed to train the 

model for 16 epochs with a minibatch size of 128. Notably, the initial learning rate value (LR) is a critical 

hyperparameter, and various LR values were tested in the experiments, as detailed in the subsequent section. Based on 

these parameters, there are 29 iterations per epoch and a total of 464 iterations for training the model. 

For reliable testing and evaluation of the model, a fivefold cross-validation approach was implemented. This method 

involves dividing the dataset into five parts, with four parts allocated for training and one part for testing (3760 

images for training and 940 images for testing). Consequently, five distinct training and testing splits were conducted, 

and the results represent the average performance across the five folds. 
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Fig. 6. Samples from the ECG images dataset. (a) NP. (b) AH. (c) MI. (d) H.MI. 

Network No of Layers No of 

Connections 

No of 

Parameters (million) 

SqueezeNet 58 75 1.24 

AlexNet 25 24 61 

Proposed CNN 38 39 3.43 

 

VI. RESULTS 

In order to analyze the performance of the experiments, several measurements were utilized, including accuracy, 

precision, recall, F1 score, as well as training and testing times. These measurements were derived from the analysis of 

the data in a confusion matrix. Accuracy refers to the percentage of correctly predicted observations in relation to the 

total number of observations. Recall represents the proportion of correctly predicted observations in the true class, 

while precision signifies the proportion of correctly predicted observations in the predicted class. The F1 score is a 

weighted average of both recall and precision, taking into account both false negatives and false positives. The 

semantics of the confusion matrix for our specific case, which involves a dataset of ECG images of cardiac patients, 

can be observed. 

 

6.1 Results of Transfer Learning and Proposed CNN Model 

The advanced architectures of the pretrained networks SqueezeNet and AlexNet were utilized to implement the transfer 

learning method in our research. Originally trained for classifying 1000 image classes, we retrained these networks to 

classify a new set of ECG images in the dataset by replacing the last layers with new ones tailored for the task at hand. 

In the case of AlexNet, the last fully connected layer was substituted with a new fully connected layer containing 4 

neurons to match the number of predicted classes. On the other hand, since SqueezeNet does not utilize fully connected 

layers, we replaced the last convolutional layer, which was designed for identifying 1000 classes, with a new 

convolutional layer containing 4 1x1 filters. For both pretrained networks, a new classification layer was added to 

generate an output based on the probabilities computed by the softmax layer. 

Each model underwent training with varying learning rates (LR) of 0.01, 0.001, and 0.0001. Notably, our proposed 

CNN model achieved the highest success rate, with an average accuracy of 98.23%, when the LR was set to 0.0001. 

The average accuracy rate of the proposed CNN model consistently yielded high results across different LR values. 

Conversely, the pretrained SqueezeNet and AlexNet models exhibited subpar performance when trained with LR 

values of 0.01 and 0.001, but showed slight improvements when the LR was adjusted to 0.0001. This disparity can be 

attributed to the fact that in transfer learning, the weights of pretrained models are not initialized from scratch. 

Hence, in order to prevent getting trapped in local minima, it is advisable to commence with a lower learning rate (LR) 

of 0.0001 when implementing transfer learning techniques. 

The confusion matrices of the proposed CNN model for the classification of heart diseases in the ECG images dataset 

for each fold, with an RL of 0.0001 and other hyper-parameters as specified. 
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The average accuracy rates for AlexNet and SqueezeNet are 96.79% and 95.43% respectively, with an RL of 0.0001. 

Additionally, the proposed CNN model surpasses other models in terms of time cost. 

Despite SqueezeNet having the fewest parameters and being a fully convolutional neural network (CNN), it exhibits 

the poorest performance in terms of time cost. This is due to the high number of computations in the convolutional 

layers, resulting in longer processing time, particularly when executed on a single CPU platform. The accuracy rate 

gradually increases with each iteration, while the loss steadily decreases and reaches 0.0043. 

In that study, the dataset was divided into 80% for training and 20% for testing They utilized a batch size of 24 and a 

learning rate of 0.0002 during the model training process. The training period extended to nearly 4 days. As per their 

publication, they attained a high precision rate of 98.3% for class MI. Conversely, our suggested CNN model surpasses 

their performance with a precision rate of 99.4% for class MI. 

 

6.2 Results of Using Pretrained Deep Learning Models As a Feature Extractor 

The ECG images in the dataset were processed using the pretrained SqueezeNet and AlexNet networks to extract their 

features. Additionally, our proposed CNN model was utilized as a feature extractor, and the outcomes were compared. 

Deep learning proves to be powerful in extracting image features without the need to retrain the entire network. The 

network's activations are computed through forward propagation of the input images up to the specific feature layer. 

For SqueezeNet, AlexNet, and our proposed CNN model, the activation feature layers used were conv10 (layer 

number 64), fc7 (layer number 20), and fc02 (layer number 32), respectively. Subsequently, these extracted features 

were employed to train various machine learning algorithms, including SVM, k-NN, DT, RF, and NB. Notably, when 

our proposed CNN model was used as the feature extractor, the NB algorithm achieved the most successful result with 

an accuracy, recall, precision, and F1-score rate of 99.79%. The SVM algorithm attained accuracy rates of 99.47%, 

97.87%, and 97.66% when our proposed CNN model, SqueezeNet, and AlexNet were utilized to extract the features, 

respectively. Consequently, our proposed CNN model yielded the best results for all performance measures. When 

comparing SqueezeNet and AlexNet, the features extracted from SqueezeNet led to higher accuracy rates for the SVM, 

RF, and NB algorithms. However, the training and testing times for SqueezeNet-based algorithms were longer due to 

the larger size of the extracted features. Despite having the smallest extracted feature size, our proposed CNN model 

achieved the best results across all performance measures, as demonstrated. Hence, this serves as evidence that our 

suggested model is designed to grasp the essential characteristics of the ECG images dataset. Consequently, the benefits 

of our proposed model encompass not only improved accuracy rates but also reduced computational expenses in 

comparison to existing studies. Nevertheless, the performance of the proposed model could be further enhanced by 

employing optimization algorithms to ascertain the optimal values for its hyperparameters. 

TABLE IV PERFORMANCE MEASURES 

 

 

 

 

 

 
Fig. 8.  Semantic of the confusion matrices for four classes results. 
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R: initial learning rate, A.: accuracy, R.: recall,

the best results. 

 

In this article, we present a lightweight CNN

abnormalities: AH, MI, H. MI, and NP classes. This model utilizes a publicly available dataset of ECG images from 

cardiac patients. The experimental results demonstrate that our proposed CNN model achieves outstanding per

in the classification of cardiovascular diseases. Additionally, it can serve as a valuable tool for feature extraction in 

traditional machine learning classifiers. Consequ

enabling the detection of cardiac diseases from ECG images, eliminating the need for manual processes that are prone 

to inaccuracies and time-consuming. 

In future research, optimization techniques can be employed to obtain optimized values for the hyperparameters

proposed CNN model. Furthermore, the versatility of our model allows for its application in

problems. Given that our model falls under the categor

parameters, and depth, it would be worthwhile to explore its utilization in the Industrial Internet of Things domain

classification purposes 
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VII. CONCLUSION 

In this article, we present a lightweight CNN-based model that can effectively classify the four major

abnormalities: AH, MI, H. MI, and NP classes. This model utilizes a publicly available dataset of ECG images from 

tal results demonstrate that our proposed CNN model achieves outstanding per

in the classification of cardiovascular diseases. Additionally, it can serve as a valuable tool for feature extraction in 

traditional machine learning classifiers. Consequently, this CNN model can assist clinicians in the medical field by 

the detection of cardiac diseases from ECG images, eliminating the need for manual processes that are prone 

echniques can be employed to obtain optimized values for the hyperparameters

proposed CNN model. Furthermore, the versatility of our model allows for its application in predicting other

problems. Given that our model falls under the category of low-scale deep learning methods in terms of layers, 

th, it would be worthwhile to explore its utilization in the Industrial Internet of Things domain

REFERENCES 

[1] World Health Organization (WHO), “Cardiovascular diseases,” Jun. 11, 2021. Accessed: Dec. 27, 2021. [Online]. 

topics/cardiovascular-diseases 

[2] Government of Westren Australia, Department of Health, “Com- mon medical tests to diagnose heart conditions,” 

Accessed: Dec. 29, 2021. [Online]. Available: https://www.healthywa.wa.gov.au/Articles/A_ E/Common

[3] M. Swathy and K. Saruladha, “A comparative study of classification and prediction of cardio

(CVD) using machine learning and deep learning techniques,” ICT Exp., to be published, 2021. [Online].

[4] R. R. Lopes et al., “Improving electrocardiogram-based detection of rare genetic heart disease using transfer 

pholamban p.Arg14del mutation carriers,” Comput. Biol. Med., vol. 131, 2021, Art. 

no. 104262. [Online]. Available: https://doi.org/10.1016/j. compbiomed.2021.104262 

[5] R. J. Martis, U. R. Acharya, and H. Adeli, “Current methods in electro- cardiogram characterization,” Comput. Biol. 

149, 2014. [Online]. Available: https://doi.org/10.1016/j.compbiomed.2014. 02.012

[6] A. Rath, D. Mishra, G. Panda, and S. C. Satapathy, “Heart disease detection using deep learning methods from 

imbalanced ECG samples,” Biomed. Signal Process. Control, vol. 68, 2021, Art. no. 102820. [Online].  Avail

c.2021.102820 

[7] A. Mincholé and B. Rodriguez, “Artificial intelligence for the electro- cardiogram,” Nature Med., vol. 25, no. 1, pp. 

Available: https://doi.org/10.1038/s41591-018-0306-1 

ISSN (Online) 2581-9429 

  

Technology (IJARSCT) 

Reviewed, Refereed, Multidisciplinary Online Journal 

 150 

The bold values indicate 

ly classify the four major cardiac 

abnormalities: AH, MI, H. MI, and NP classes. This model utilizes a publicly available dataset of ECG images from 

tal results demonstrate that our proposed CNN model achieves outstanding performance 

in the classification of cardiovascular diseases. Additionally, it can serve as a valuable tool for feature extraction in 

ently, this CNN model can assist clinicians in the medical field by 

the detection of cardiac diseases from ECG images, eliminating the need for manual processes that are prone 

echniques can be employed to obtain optimized values for the hyperparameters of our 

predicting other types of 

deep learning methods in terms of layers, 

th, it would be worthwhile to explore its utilization in the Industrial Internet of Things domain for 

Dec. 27, 2021. [Online]. 

mon medical tests to diagnose heart conditions,” 

ticles/A_ E/Common-medical-

[3] M. Swathy and K. Saruladha, “A comparative study of classification and prediction of cardio-vascular diseases 

lished, 2021. [Online]. Available: 

based detection of rare genetic heart disease using transfer 

carriers,” Comput. Biol. Med., vol. 131, 2021, Art. 

cardiogram characterization,” Comput. Biol. 

https://doi.org/10.1016/j.compbiomed.2014. 02.012 

[6] A. Rath, D. Mishra, G. Panda, and S. C. Satapathy, “Heart disease detection using deep learning methods from 

imbalanced ECG samples,” Biomed. Signal Process. Control, vol. 68, 2021, Art. no. 102820. [Online].  Avail- able: 

cardiogram,” Nature Med., vol. 25, no. 1, pp. 



IJARSCT  ISSN (Online) 2581-9429 

    

 

       International Journal of Advanced Research in Science, Communication and Technology (IJARSCT) 

                               International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal 

Volume 4, Issue 4, May 2024 

Copyright to IJARSCT DOI: 10.48175/IJARSCT-18318   151 

www.ijarsct.co.in  

Impact Factor: 7.53 

[8] A. Isin and S. Ozdalili, “Cardiac arrhythmia detection using deep learning,” Procedia Comput. Sci., vol. 120, pp. 

268–275, 2017. [Online]. Available: https://doi.org/10.1016/j.procs.2017.11.238 

[9] H. Bleijendaal et al., “Computer versus cardiologist: Is a machine learn- ing algorithm able to outperform an expert 

in diagnosing phospholam- ban (PLN) p.Arg14del mutation on ECG?,” Heart Rhythm, vol. 18, no. 1, pp. 79–87, 2020. 

[Online]. Available: https://doi.org/10.1016/j. hrthm.2020.08.021 

[10] U. R. Acharya, H. Fujita, O. S. Lih, M. Adam, J. H. Tan, and C. K. Chua, “Automated detection of coronary artery 

disease using different durations of ECG segments with convolutional neural network,” Knowl.-Based Syst., vol. 132, 

pp. 62–71, 2017. [Online]. Available: https://doi.org/10.1016/j. knosys.2017.06.003 

[11] M. Kantardzic, Data Mining: Concepts, Models, Methods, and Algorithms, 3rd ed. Hoboken, NJ, USA: Wiley, 

2020. 

[12] S. García, J. Luengo, and F. Herrera, Data Preprocessing in Data Mining, 1st ed. Berlin, Germany: Springer, 2015. 

[13] G. Dougherty, Pattern Recognition and Classification: An Introduction. Berlin, Germany: Springer, 2013. 

[14] A. Subasi, Practical Machine Learning for Data Analysis Using Python. Cambridge, MA, USA: Academic, 2020. 

[15] J. Soni, U. Ansari, D. Sharma, and S. Soni, “Predictive data mining for medical diagnosis: An overview of heart 

disease prediction,” Int. J. Comput. Appl., vol. 17, no. 8, pp. 43–48, 2011. 

[16] K. Dissanayake and M. G. Md Johar, “Comparative study on heart disease prediction using feature selection 

techniques on classification algorithms,” Appl. Comput. Intell. Soft Comput., vol. 2021, 2021, Art. no. 5581806. 

[Online]. Available: https://doi.org/10.1155/2021/5581806 

[17] A. H. Gonsalves, F. Thabtah, R. M. A. Mohammad, and G. Singh, “Pre- diction of coronary heart disease using 

machine learning: An experimental analysis,” in Proc. 3rd Int. Conf. Deep Learn. Technol., 2019, pp. 51–56. [Online]. 

Available: https://doi.org/10.1145/3342999.3343015 

[18] H. Kim, M. I. M. Ishag, M. Piao, T. Kwon, and K. H. Ryu, “A data mining approach for cardiovascular disease 

diagnosis using heart rate variability and images of carotid arteries,” Symmetry, vol. 8, no. 6, 2016, Art. no. 47. 

[Online]. Available: https://doi.org/10.3390/sym8060047 

[19] T. Ozcan, “A new composite approach for COVID-19 detection in X-ray images,” Appl. Soft Comput., vol. 111, 

2021, Art. no. 107669. [Online]. Available: https://doi.org/10.1016/j.asoc.2021.107669 

[20] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer, “SqueezeNet: Alexnet-level 

accuracy with 50x fewer parameters and 0.5 MB model size,” 2016, arXiv:1602.07360. 

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” 

Adv. Neural Inf. Process. Syst., vol. 25, pp. 1097–1105, 2012. 

[22] A. H. Khan, M. Hussain, and M. K. Malik, “Cardiac disorder classification by electrocardiogram sensing using 

deep neural network,” Complexity, vol. 2021, 2021, Art. no. 5512243. [Online]. Available: https://doi.org/10. 

1155/2021/5512243 

 [23] A. H. Khan and M. Hussain, “ECG images dataset of cardiac patients,” Mendeley Data, vol. V2, 2021. [Online]. 

Available: https://doi.org/10. 17632/gwbz3fsgp8.2 

[24] C. Potes, P. Saman, A. Rahman, and B. Conroy, “Ensemble of feature- based and deep learning- based classifiers 

for detection of abnormal heart sounds,” in Proc. Comput. Cardiol. Conf., 2016, pp. 621–624. 

[25] A. Nannavecchia, F. Girardi, P. R. Fina, M. Scalera, and G. Dimauro, “Personal heart health monitoring based on 

1D convolutional neural network,” 

J. Imag., vol. 7, no. 2, 2021, Art. no. 26. [Online]. Available: https://doi.org/10.3390/jimaging7020026 

[26] Q. Zhang, D. Zhou, and X. Zeng, “HeartID: A multiresolution convolu- tional neural network for ECG-based 

biometric human identification in smart health applications,” IEEE Access, vol. 5, pp. 11805– 11816,  2017. [Online]. 

Available: https://doi.org/10.1109/ACCESS.2017.2707460 

[27] U. R. Acharya, S. L. Oh, Y. Hagiwara, J. H. Tan, M. Adam, and R. S. Tan, “A deep convolutional neural network 

model to classify heartbeats,” Comput. Biol. Med., vol. 89, pp. 389–396, 2017. [Online]. Available: https: 

//doi.org/10.1016/j.compbiomed.2017.08.022 

[28] R. Bharti, A. Khamparia, M. Shabaz, G. Dhiman, S. Pande, and P. Singh, “Prediction of heart disease using a 

combination of machine learning and deep learning,” Comput. Intell. Neurosci., vol. 2021, 2021,  Art.  no.  8387680.  

[Online].  Available:https://doi.org/10.1155/2021/ 8387680 



IJARSCT  ISSN (Online) 2581-9429 

    

 

       International Journal of Advanced Research in Science, Communication and Technology (IJARSCT) 

                               International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal 

Volume 4, Issue 4, May 2024 

Copyright to IJARSCT DOI: 10.48175/IJARSCT-18318   152 

www.ijarsct.co.in  

Impact Factor: 7.53 

[29] P. Bizopoulos and D. Koutsouris, “Deep learning in cardiology,” IEEE Rev. Biomed. Eng., vol. 12, pp. 168–193, 

2018. [Online]. Available: https://doi.org/10.1109/RBME.2018.2885714 

[30] S. Kiranyaz, T. Ince, and M. Gabbouj, “Real- time patient-specific ECG classification by 1-D convolutional neural 

networks,” IEEE Trans. Biomed. Eng., vol. 63, no. 3, pp. 664–675, Mar. 2016. [Online]. Available: 

https://doi.org/10.1109/TBME.2015.2468589 

[31] M. Zubair, J. Kim, and C. Yoon, “An automated ECG beat classification system using convolutional neural 

networks,” in Proc. 6th Int. Conf. IT Convergence Secur., 2016, pp. 1–5. [Online]. Available: 

https://doi.org/10.1109/ICITCS.2016.7740310 

[32] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo- bilenetv2: Inverted residuals and linear 

bottlenecks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 4510–4520. 

[33] T. Rahman et al., “COV-ECGNET: COVID-19 detection using ECG trace images with deep convolutional neural 

network,” 2021, arXiv:2106.00436. 

[34] G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in Proc. 

IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 2261–2269.  

[35] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture for computer 

vision,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 2818–2826. 

[36] A. Pal, R. Srivastva, and Y. N. Singh, “CardioNet: An efficient ECG arrhythmia classification system using 

transfer learning,” Big Data Res., vol. 26, 2021, Art. no. 100271. [Online]. Available: https://doi.org/10. 

1016/j.bdr.2021.100271 

[37] R. Avanzato and F. Beritelli, “Automatic ECG diagnosis using convo- lutional neural network,” Electronics, vol. 

9, no. 6, 2020, Art. no. 951. [Online]. Available: https://doi.org/10.3390/electronics9060951 

[38] U. R. Acharya, H. Fujita, S. L. Oh, Y. Hagiwara, J. H. Tan, and M. Adam, “Application of deep convolutional 

neural network for automated detection of myocardial infarction using ECG signals,” Inf. Sci., vol. 415– 416, pp. 190–

198, 2017. [Online]. Available: https://doi.org/10.1016/j.ins. 2017.06.027 

[39] M. Naz, J. H. Shah, M. A. Khan, M. Sharif, M. Raza, and R. Damaševicˇius, “From ECG signals to images: A 

transformation based ap- proach for deep learning,” PeerJ Comput. Sci., vol. 7, 2021, Art. no. e386, doi: 10.7717/peerj-

cs.386. 

[40] H. El-Amir and M. Hamdy, Deep Learning Pipeline: Building a Deep Learning Model With TensorFlow. New 

York, NY, USA: Apress Media, 2020. 

[41] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, “Support vector machines,” IEEE Intell. Syst. 

Appl., vol. 13, no. 4, pp. 18–28, Apr. 1998. [Online]. Available: https://doi.org/10.1109/5254.708428 

[42] M. Abubaker and W. M. Ashour, “Efficient data clustering algorithms: Im- provements over Kmeans,” Int. J. 

Intell. Syst. Appl., vol. 5, no. 3, pp. 37–49,  2013. [Online]. Available: https://doi.org/10.5815/ijisa.2013.03.04 

[43] B. Charbuty and A. Abdulazeez, “Classification based on decision tree algorithm for machine learning,” J. Appl. 

Sci. Technol. Trends, vol. 2, no. 1, pp. 20–28, 2021. 

[44] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001. [Online]. Available: 

https://doi.org/10.1023/A:1010933404324  

[45] E. Miranda, E. Irwansyah, A. Y. Amelga, M. M. Maribondang, and M. Salim, “Detection of cardiovascular disease 

risk’s level for adults using naive Bayes classifier,” Healthcare Inform. Res., vol. 22, no. 3, pp. 196–205, 2016. 

[Online]. Available: https://doi.org/10.4258/hir.2016. 22.3.196 

[46] G. Masetti and F. D. Giandomenico, “Analyzing forward robustness of feedforward deep neural networks with 

LeakyReLU activation function through symbolic propagation,” in Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discov. 

Databases, 2020, pp. 460–474. 

[47] S. Shahinfar, P. Meek, and G. Falzon, “How many images do I need?” Understanding how sample size per class 

affects deep learning model performance metrics for balanced designs in autonomous wildlife mon- itoring,” Ecological 

Inform., vol. 57, 2020, Art. no. 101085. [Online]. Available: https://doi.org/10.1016/j.ecoinf.2020.101085 

[48] B. Zoph, E. D. Cubuk, G. Ghiasi, T. Lin, J. Shlens, and Q. V. Le, “Learning data augmentation strategies for object 

detection,” in Proc. Eur. Conf. Comput. Vis., 2020, pp. 566–583 

 


