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Abstract: Code summarization is the process of automatically generating a concise and informative summary 

of a given code snippet. It aims to assist software developers in understanding the functionality of the code. In 

this paper, we review three approaches for code summarization. The approach leverages the hierarchical 

structure of the abstract syntax tree (AST) of the code, which represents the syntactic structure of the code. The 

AST is encoded using a tree-LSTM network, which is capable of capturing the structural information of the 

AST. The encoded tree-LSTM representation of the AST is then fed into a decoder network to generate the 

summary. The Tree-LSTM-based approach for code summarization has shown promising results in capturing 

the hierarchical structure of the code and generating accurate and concise summaries. Further research can 

explore the integration of additional semantic information and the extension of our approach to other 

programming languages 

 

Keywords: BASTS, AST, Encoder-Decoder, Sentence-Weight algorithm 
 

I. INTRODUCTION 

The field of natural language processing has seen significant advancements in recent years, particularly in the area of 

generating natural language descriptions of source code. In this overview, we will look at three research papers that 

propose novel approaches for generating natural language descriptions of source code. 

The first paper, “Improved code summarization using blockwise abstract syntax tree splitting” , proposes a new 

approach to code summarization that uses block-wise abstract syntax tree splitting to divide a complex code block into 

smaller sub-blocks that can be more easily summarized. The approach involves first splitting the code block into a set 

of smaller blocks based on the abstract syntax tree of the code. Then, each sub-block is summarized individually using 

an attention-based neural network that generates a summary for each sub-block. Finally, the individual summaries are 

combined to generate a summary for the entire code block. 

The second paper, "A Multi-Module Based Method for Generating Natural Language Descriptions of Code Fragments", 

proposes a three-module approach to generate human-like descriptions of code fragments. The approach involves pre-

processing the code, internal processing to derive an abstract representation of the code, and external processing to 

generate a description using a sentence weight algorithm and sentence similarity checking. The evaluation showed that 

the proposed approach outperforms existing methods in terms of accuracy and fluency. 

The third paper, "Source Code Summarization Using Attention-based Keyword Memory Networks'', proposes an 

approach that uses attention-based keyword memory networks to generate a summary of source code. The proposed 

approach uses attention mechanisms to identify the most relevant keywords, which are then stored in a keyword 

memory module. The approach was evaluated on two different datasets, and the results showed that it outperformed 

existing state-of-the-art methods in terms of accuracy and fluency. 

Overall, these three papers highlight the significant progress made in the field of natural language processing for 

generating natural language descriptions of source code. 

These approaches have the potential to improve software documentation, aid in code comprehension, and assist in 

software maintenance and development.  
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II. OVERVIEW 

A. Improved code summarization using blockwise abstract syntax tree splitting 

Blockwise abstract syntax tree (AST) splitting is a technique used in code summarization to improve the quality of the 

generated summaries. The block wise AST splitting approach involves dividing the code into smaller blocks based on 

its AST structure. The AST is a tree-like representation of the code that shows the syntactic structure of the program. 

By splitting the code into smaller blocks based on its AST structure, the summarization model can better understand the 

context and meaning of each block, leading to more accurate and informative summaries. 

The blockwise AST splitting technique works by recursively traversing the AST of the code and splitting it into smaller 

blocks at each node. Each block is then summarized separately, and the summaries are combined to form the final 

summary of the code. 

 

B. A Multi-Module Based Method for Generating Natural Language Descriptions of Code Fragments 

A Multi-Module Based Method for Generating Natural Language Descriptions of Code Fragments is a research paper 

that presents a novel approach to generate human-like descriptions of code fragments. The approach consists of three 

main modules: pre-processing, internal processing, and external processing 

The pre-processing module is responsible for parsing the code and extracting relevant information such as variable 

names, function names, and their corresponding types. This information is then used by the internal processing module 

to generate an abstract representation of the code fragment. The internal processing module uses a combination of 

syntactic and semantic analysis techniques to derive the abstract representation. 

The abstract representation is then passed to the external processing module, which includes a sentence weight 

algorithm and sentence similarity checking. The sentence weight algorithm assigns weights to candidate sentences 

based on their relevance to the code fragment and their fluency. The candidate sentences are then ranked based on their 

weights, and the top-ranked sentence is selected as the final description of the code fragment. The sentence similarity 

checking is performed by comparing the generated sentence with a set of reference sentences, which are manually 

created by human annotators. The similarity is measured using a combination of semantic and syntactic similarity 

metrics. 

 

C. Source Code Summarization Using Attention-based Keyword Memory Networks 

Source Code Summarization Using Attention-based Keyword Memory Networks is a research paper that proposes a 

new approach to automatically generate a summary of source code. The proposed approach uses attention-based 

keyword memory networks, which are neural networks that are capable of selecting the most relevant keywords from 

the source code to generate a summary. 

The approach consists of three main stages: preprocessing, encoding, and decoding. In the preprocessing stage, the 

source code is tokenized and preprocessed to remove any irrelevant information. In the encoding stage, the tokenized 

source code is fed into a neural network that uses attention mechanisms to identify the most relevant keywords. These 

keywords are then stored in a keyword memory module. Finally, in the decoding stage, the keyword memory module is 

used to generate a summary of the source code. 

 

III. METHOD -1 USING BLOCK-WISE ABSTRACT SYNTAX TREE SPLITTING[1] 

Code summarization is the process of creating a summary when a source code is given as the input. Traditional code 

summarization methods usually rely on recurrent neural networks(RNN). But these methods cannot handle the 

complexity of the code and usually do not capture the syntactic and structural information. It is important to understand 

each token and syntax while summarizing the code. Either NLP syntax trees[2] or AST trees can be used for 

representing the code. The issue with the NLP syntax tree is that it cannot represent all the details of the code. That is 

the tree contains a vague idea of the code. Applying a machine learning model on an NLP syntax tree[2] can generate 

inadequate and meaningless results.To overcome this the source code is initially converted into Abstract Syntax 

Tree(AST). 

An AST is the structural representation of the source code. Usually each of the nodes represents a statement in the 

code.The AST representation is detailed and complex. Encoding this tree gives better and accurate results.  
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Methodology 

Encoding an serialized AST can be implemented using LSTM[3] or GRU. While encoding serialized AST, linear 

structure is captured but the hierarchical structure cannot be comprehended. 

The most relevant work discussed is creating smaller AST’s. Encoding these AST using a machine learning model 

while learning about local and long term dependencies. 

 

Steps 

 Code Splitting:-Code splitting is done to improve the summary produced. The code is first converted to control 

flow graphs. This graph shows the flow of control from one node to another. Then this graph is converted to a 

dominator tree. It is created in such a way that the previous node dominates the successive node and all the 

paths from first to other nodes pass through it.The edges are removed on the basis of the number of incoming 

edges. If the count of incoming edges is more then a split is created. The dominator tree is split on the basis of 

the idea that each block contains more logic than a single statement. 

 Tree Encoding:-Creating a vector representation using syntax embedding is the first step. The vector 

representation is pre-trained and fine tuned before applying a machine learning model.Child -Sum LSTM[6] is 

applied to this representation. As it processes each node, new hidden states are processed.The values of the 

input, output and forget gate are also updated at each stage through the process. A sigmoid activation function 

is used to obtain the result between zero and one. The values closer to zero are not that important and values 

closer to one are given more priority. 

 Summarizing Code With Transformer[5]:-The final step is summarization. It is done using an encoder and 

decoder model. The embedding of the AST is passed through a pooling layer. Average pooling is preferred in 

this case.The syntax embeddings and code token embeddings are combined in a feed-forward layer before it is 

further processed. 

 Encoder- It takes the input token by token and encodes the new hidden state information. This step is crucial 

for the accuracy of the summary. 

 Decoder- the decoder is responsible for generating a comment word based on the previous output and the 

current encodings. 

 

Benefits 

 The splitting of the AST into blocks is done on the basis that each block can retain sufficient data. BASTS is 

effective and potent and thereby used in big projects. 

 BASTS saves money on grammar notation correction by using training data first, followed by field names, as 

opposed to starting from scratch with two representations. 

 BASTS is helpful as it can understand both long-term dependencies between tokens and local hierarchical 

connections between grammars. 

 

Conclusion 

The summaries generated by the proposed approach also demonstrate a better understanding of the code's functionality, 

capturing the fine-grained structural information of the code.The hybrid architecture of CNNs and transformers further 

improves the model's ability to capture both local and global dependencies. 

 

IV. METHOD - 2 MULTI-MODULE BASED APPROACH 

Choosing the most important functionality from source code is one of the most critical elements in source code 

summarization. Logic and conciseness has to be maintained for producing an apt summary for the program. The 

information presented in a concise format must have the complete idea flow of the program as well. A multi-module 

based approach is discussed here which eases and presents the process of source code summarization in a clear way. 

The three modules are Preprocessing module, internal processing and external processing module. A sentence weight 

algorithm is then used at the end to present the summary in an optimized manner. 
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Methodology 

Preprocessing module 

This module is mainly used to categorize the given source code into different classifications according to their type. 

This is mainly done as different type of statements are assigned different priorities. 

There are 3 main classifications: 

1. Direct statement: These highlight the main behavior of the program. These include statements like type 

declarations, method calls, assignment of values to variables. 

 Example: int x=0; 

2. Indirect statement: They serve as a helping hand for direct statements and add on to explaining the points 

discussed in the code fragment. A program has a huge number of indirect statements. Since they form a 

majority, they contain a lot of high priority information which aids in developing a summary. They usually 

contain operation, auxiliary parameters, method calls, variable types and more. 

3. Special statement: They mostly contain print statements which contain and convey more sensitive information. 

The information printed can easily be used to develop summaries. 

Example: Consider 2 statements, first one is printf(“The sum of the array members is %d”,sum of array); and the 

second is, s=s+c;. It is easier to extract summary from the first sentence rather than the second one, so special 

statements are always given the highest priority in determining the summary of a code fragment. 

 

Internal Processing Module 

Here Software Word Usage Model along with CamelCase to find out the characteristics and then natural language 

descriptions are generated. 

The template is of the form: Verb A preposition B A and B get values from the program and verb and 

proposition positions are fixed irrespective of the type of 

program. 2 types of cases can arise. One is variable assignment type of statements like x = 10. 10 will be the subject 

and = is taken as an assignment. So the description will be formed as “Add 10 assignment to x”.Another is class object 

instantiation which is printed as “instantiation for class class_name”. 

 

External processing module 

The generated natural language descriptions try to connect with each other to present a logic flow. First the sentences 

are sorted according to their sentence type weight value. The similarity between sentences is checked. For this, cosine 

similarity is used. 

 

Sentence Weight Algorithm 

Sorting is done according to prioritization which is given during the preprocessing module. The weight is taken as the 

sum of weight value of the sentence and the weight value of that particular subject presented in the sentence. 

Sentence Similarity Checking 

Cosine similarity is used by first mapping to vectors. Then sentence ordering is done as follows: Let S1 and S2 be 

sentence types of sentence 1 and sentence 2. 

If S1>S2, then S1->S2 If S2>S1, then S2->S1 

If both are equal, then sorted according to subject weight. 

 

Benefits 

Three aspects are taken into consideration while evaluating the above proposed method. They are: accuracy, simplicity 

and smoothness. The accuracy test was taken by comparing the method with manual methods like TextRank and 

Suncode. These methods only showed 70% inclusion of subject words while the accuracy rate is 96% for the method 

discussed above. The simplicity rate is 40% which is less compared to the research work done by various other 

researchers so this section can be worked upon as a future work. Human evaluators were chosen to judge the summary 

and showed great results. 
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Threats 

While performing internal processing, certain important keywords or information can be lost which can lead to loss of 

important information. The method was only tested for 2 publicly available datasets. More testing has to be done to 

ensure that the accuracy rate remains same for all kinds of datasets. 

 

V. METHOD -3 SOURCE CODE SUMMARIZATION USING ATTENTION-BASED KEYWORD MEMORY 

NETWORKS [13] 

Source code is written in coding languages which gives instructions to computers to perform certain computations. 

However the description of source code is written in natural language. There is obviously a huge difference in the 

syntax of natural language and source code, it is very difficult to translate descriptions of source code directly. A two-

phase model is created that will help build a bridge between the gap of natural language and its description. 

 

Methodology 

A two-phase model that contains a keyword predictor and a description generator is created to make effective 

summaries of source codes. The keyword predictor would identify the most relevant keywords in the code this is done 

using convolutional neural network models and the description generator uses convolutional neural networks and 

recurrent neural networks along with the keywords that were earlier predicted to create summaries. Using keywords to 

generate a summary is easier than without as keywords take the most important parts of the code. 

 

Steps 

 The process of predicting keywords in source code involves analyzing the code's description to identify nouns 

and verbs that are relevant to the code's role and operation. This is done by extracting the nouns and verbs 

from the description and using them as keywords for the corresponding source code. 

 To train the model, the extracted keywords are used as examples of what to look for in future code 

descriptions. The model is then trained to predict which nouns and verbs are likely to appear in the description 

of a given source code to create accurate summaries. Cross entropy is used to minimize the difference between 

the target probability distribution and the predicted probability distribution of the keyword prediction layer. 

[14,15] 

 The description generator contains three parts which include the encoder, memory and the decoder. A 

description generator is a natural language generation model that tries to create an understandable summary of 

code. 

 The encoder converts the source code into a context vector, this represents the main characteristics of the code. 

This vector representation takes the main features and patterns from the code that are needed to create a 

summary. To capture important parts of the code, where attention should be given, an attention mechanism is 

added to the CNNs in the encoder.[16] An attention mechanism focuses on important parts of the code that are 

needed to create summaries. It assigns weights to the tokens in the input code based on its importance in the 

summary that is currently being generated. 

 The memory contains the keyword memory with an attention mechanism. The keywords that were predicted 

from the source code can be found here and is retrieved according to its relevance and is given as an input to 

the decoder. 

 The decoder creates a summary of the source code since. As it is creating a summary the previous words have 

a connection to the current words so LSTM [17] is used. LSTM is a type of recurrent neural network, a node 

will get an input that will be computed and then an output will be created which will be fed as an input in the 

next step along with that step's input. Hence it will remember previous inputs which help create logical 

summaries. 

 

Benefits 

Some benefits of using keyword memory include: 
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 Accuracy- Important parts of the code are being detected and used in the summary. 

 Speed- It allows faster detection of relevant parts of the code. 

 More understandable- It will focus on necessary parts of the code so that beginners can know where to focus 

their attention in understanding the program. 

 

Conclusion 

 After experiments were conducted it was shown that more relevant and accurate summaries were created 

 when using keywords along with attention as it considered the previous word sequence. While the results 

without using keywords were not as accurate. 

 Keyword memory is very useful in creating accurate summaries and can help reduce the significant difference 

between source code and its description. 

 

VI. RESULTS AND DISCUSSION 

Fig.1. Rouge -1 measures of different code summarization methods 

ROUGE stands for Recall-Oriented Baseline Study for Substantive Evaluation. Basically, it is a set of metrics that can 

be used to evaluate both automatic text summarization and machine translations. It works by comparing an 

automatically generated summary or translation to a set of reference summaries (usually human-generated) 

Rouge-N — This provides information about how unigrams, bigrams, trigrams and higher n-grams overlap. 

Rouge-L uses LCS to determine the longest matching word sequence. The advantage of using LCS is that it does not 

require consecutive matches, but rather consecutive matches that reflect sentence-level word order. 

Rouge-S - All pairs of words in a sentence that allow arbitrary spaces are considered ordered. 

Here, rouge-1 is a measure which considers unigrams between human-made and system-made summaries. It measures 

the overlap of these two. 

 

VII. CONCLUSION 

After detailed review and analysis we have concluded that summarizing code using BASTS and Multiway-LSTM 

provides accurate results. Focus is given to BASTS as it can be used to identify and accurately split AST while 

maintaining both local and hierarchical dependencies. Multi-way LSTM is used to process data that has multiple 

relationships between the elements, such as data in a recommendation system or a knowledge graph. Better 

handling of long-term dependencies: Like regular LSTMs, Multiway-LSTMs are able to capture long-term 

dependencies in data, which is useful for tasks such as language translation and text generation. 
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