
IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 4, Issue 6, April 2024

Copyright to IJARSCT DOI: 10.48175/IJARSCT-17645 282

www.ijarsct.co.in

Impact Factor: 7.53

Text Classification in Natural Language

Processing
Venkata Mahesh Babu Batta

https://orcid.org/0000-0002-1029-6402

M.Tech, Department of CSE

 University College of Engineering, Osmania University, Hyderabad, Telangana, India

Abstract: This paper presents an overview of text classification techniques, focusing on the pre-processing

steps, feature extraction methods, and model selection strategies employed in the process. Algorithms such

as Naive Bayes, Support Vector Machines (SVM), logistic regression, and neural networks are used.

Furthermore, recent advancements in deep learning models for text classification, including Convolutional

Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) are used. Comprehensive understanding

of text classification methodologies in NLP and insights into current trends and challenges in the field are

mentioned

Keywords: Natural Language Processing(NLP), Python

I. INTRODUCTION

Naive Bayes algorithm using Python: Use the popular scikit-learn library

#python

from sklearn.datasets import fetch_20newsgroups

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.naive_bayes import MultinomialNB

from sklearn.pipeline import make_pipeline

from sklearn.metrics import classification_report, accuracy_score

from sklearn.model_selection import train_test_split

Load the 20 newsgroups dataset (a collection of newsgroup documents)

data = fetch_20newsgroups(subset='all', shuffle=True, random_state=42)

Split the dataset into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.25, random_state=42)

Create a pipeline with TF-IDF vectorizer and Naive Bayes classifier

model = make_pipeline(TfidfVectorizer(), MultinomialNB())

Train the model on the training data

model.fit(X_train, y_train)

Predict the labels for the test set

y_pred = model.predict(X_test)

Evaluate the model

print("Accuracy:", accuracy_score(y_test, y_pred))

print("\nClassification Report:")

print(classification_report(y_test, y_pred, target_names=data.target_names))

 International Journal of Advanced

 International Open-Access, Double

Copyright to IJARSCT DOI: 10.48175/

www.ijarsct.co.in

Impact Factor: 7.53

Explanation:

 start by importing necessary modules from scikit

 load the 20 newsgroups dataset using `fetch_20newsgroups()` function.

 split the dataset into training and testing sets using `train_

 create a pipeline consisting of a TF

`make_pipeline()` function.

 train the model on the training data using `fit()` method.

 make predictions on the test data using `predict()` method.

 evaluate the model's performance by calculating accuracy and generating a classification report using

`accuracy_score()` and `classification_report()` functions respectively.

Support Vector Machines:

Text classification using Support Vector Machines (SVM) in Python with the scikit

newsgroups dataset

#python

from sklearn.datasets import fetch_20newsgroups

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.svm import SVC

from sklearn.pipeline import make_pipeline

from sklearn.metrics import classification_report, accuracy_score

from sklearn.model_selection import train_test_split

Load the 20 newsgroups dataset

data = fetch_20newsgroups(subset='all', shuffle=True, random_state=42)

IJARSCT ISSN (Online) 2581

International Journal of Advanced Research in Science, Communication and Technology

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 4, Issue 6, April 2024

DOI: 10.48175/IJARSCT-17645

start by importing necessary modules from scikit-learn.

load the 20 newsgroups dataset using `fetch_20newsgroups()` function.

split the dataset into training and testing sets using `train_test_split()` function.

create a pipeline consisting of a TF-IDF vectorizer and a Multinomial Naive Bayes classifier using

train the model on the training data using `fit()` method.

using `predict()` method.

evaluate the model's performance by calculating accuracy and generating a classification report using

`accuracy_score()` and `classification_report()` functions respectively.

Figure: Naive Bayes

classification using Support Vector Machines (SVM) in Python with the scikit-learn library. use the 20

from sklearn.datasets import fetch_20newsgroups

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.pipeline import make_pipeline

from sklearn.metrics import classification_report, accuracy_score

from sklearn.model_selection import train_test_split

', shuffle=True, random_state=42)

ISSN (Online) 2581-9429

Technology (IJARSCT)

Reviewed, Refereed, Multidisciplinary Online Journal

 283

IDF vectorizer and a Multinomial Naive Bayes classifier using

evaluate the model's performance by calculating accuracy and generating a classification report using

learn library. use the 20

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 4, Issue 6, April 2024

Copyright to IJARSCT DOI: 10.48175/IJARSCT-17645 284

www.ijarsct.co.in

Impact Factor: 7.53

Split the dataset into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.25, random_state=42)

Create a pipeline with TF-IDF vectorizer and Support Vector Machines classifier

model = make_pipeline(TfidfVectorizer(), SVC(kernel='linear'))

Train the model on the training data

model.fit(X_train, y_train)

Predict the labels for the test set

y_pred = model.predict(X_test)

Evaluate the model

print("Accuracy:", accuracy_score(y_test, y_pred))

print("\nClassification Report:")

print(classification_report(y_test, y_pred, target_names=data.target_names))

Explanation:

 import necessary modules from scikit-learn.

 load the 20 newsgroups dataset using `fetch_20newsgroups()` function.

 split the dataset into training and testing sets using `train_test_split()` function.

 create a pipeline consisting of a TF-IDF vectorizer and a Support Vector Machines classifier using

`make_pipeline()` function.

 train the model on the training data using `fit()` method.

 make predictions on the test data using `predict()` method.

 evaluate the model's performance by calculating accuracy and generating a classification report using

`accuracy_score()` and `classification_report()` functions respectively.

Figure: Support Vector Machines

Logistic Regression:

Text classification using logistic regression in Python with scikit-learn, using the 20 newsgroups dataset.

#python

from sklearn.datasets import fetch_20newsgroups

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.linear_model import LogisticRegression

from sklearn.pipeline import make_pipeline

from sklearn.metrics import classification_report, accuracy_score

from sklearn.model_selection import train_test_split

Load the 20 newsgroups dataset

data = fetch_20newsgroups(subset='all', shuffle=True, random_state=42)

Split the dataset into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.25, random_state=42)

 International Journal of Advanced

 International Open-Access, Double

Copyright to IJARSCT DOI: 10.48175/

www.ijarsct.co.in

Impact Factor: 7.53

Create a pipeline with TF-IDF vectorizer and Logistic Regression classifier

model = make_pipeline(TfidfVectorizer(), LogisticRegression(max_iter=1000))

Train the model on the training data

model.fit(X_train, y_train)

Predict the labels for the test set

y_pred = model.predict(X_test)

Evaluate the model

print("Accuracy:", accuracy_score(y_test, y_pred))

print("\nClassification Report:")

print(classification_report(y_test, y_pred, target_names=data.target_names))

Explanation:

- import necessary modules from scikit-learn.

- load the 20 newsgroups dataset using `fetch_20newsgroups()` function.

- split the dataset into training and testing sets using `train_test_split()` function.

-create a pipeline consisting of a TF-IDF vectorizer and a Logistic Regression classifier using `make_pipeline()`

function.

- train the model on the training data using `fit()` method.

- make predictions on the test data using `predict()` method.

- evaluate the model's performance by calculat

`accuracy_score()` and `classification_report()` functions respectively.

IJARSCT ISSN (Online) 2581

International Journal of Advanced Research in Science, Communication and Technology

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 4, Issue 6, April 2024

DOI: 10.48175/IJARSCT-17645

IDF vectorizer and Logistic Regression classifier

model = make_pipeline(TfidfVectorizer(), LogisticRegression(max_iter=1000))

print("Accuracy:", accuracy_score(y_test, y_pred))

print(classification_report(y_test, y_pred, target_names=data.target_names))

learn.

load the 20 newsgroups dataset using `fetch_20newsgroups()` function.

split the dataset into training and testing sets using `train_test_split()` function.

IDF vectorizer and a Logistic Regression classifier using `make_pipeline()`

train the model on the training data using `fit()` method.

make predictions on the test data using `predict()` method.

evaluate the model's performance by calculating accuracy and generating a classification report using

`accuracy_score()` and `classification_report()` functions respectively.

ISSN (Online) 2581-9429

Technology (IJARSCT)

Reviewed, Refereed, Multidisciplinary Online Journal

 285

IDF vectorizer and a Logistic Regression classifier using `make_pipeline()`

ing accuracy and generating a classification report using

 International Journal of Advanced

 International Open-Access, Double

Copyright to IJARSCT DOI: 10.48175/

www.ijarsct.co.in

Impact Factor: 7.53

Conventional Neural Networks:

Text classification using a conventional neural network (also known as a feedforward neural network or multilayer

perceptron) in Python with Keras. use the 20 newsgroups dataset as before.

#python

import numpy as np

from sklearn.datasets import fetch_20newsgroups

from sklearn.model_selection import train_test_split

from sklearn.feature_extraction.text import TfidfVectorizer

from keras.models import Sequential

from keras.layers import Dense, Dropout

from keras.utils import to_categorical

Load the 20 newsgroups dataset

data = fetch_20newsgroups(subset='all', shuffle=True, random_state=42)

Split the dataset into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.25, random_state=42)

Convert text data to TF-IDF vectors

vectorizer = TfidfVectorizer()

X_train_tfidf = vectorizer.fit_transform(X_train)

X_test_tfidf = vectorizer.transform(X_test)

IJARSCT ISSN (Online) 2581

International Journal of Advanced Research in Science, Communication and Technology

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 4, Issue 6, April 2024

DOI: 10.48175/IJARSCT-17645

Figure: Logistic Regression

ext classification using a conventional neural network (also known as a feedforward neural network or multilayer

perceptron) in Python with Keras. use the 20 newsgroups dataset as before.

sgroups

from sklearn.model_selection import train_test_split

from sklearn.feature_extraction.text import TfidfVectorizer

data = fetch_20newsgroups(subset='all', shuffle=True, random_state=42)

Split the dataset into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.25, random_state=42)

X_train_tfidf = vectorizer.fit_transform(X_train)

X_test_tfidf = vectorizer.transform(X_test)

ISSN (Online) 2581-9429

Technology (IJARSCT)

Reviewed, Refereed, Multidisciplinary Online Journal

 286

ext classification using a conventional neural network (also known as a feedforward neural network or multilayer

X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.25, random_state=42)

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 4, Issue 6, April 2024

Copyright to IJARSCT DOI: 10.48175/IJARSCT-17645 287

www.ijarsct.co.in

Impact Factor: 7.53

Convert target labels to one-hot encoding

num_classes = len(np.unique(y_train))

y_train_onehot = to_categorical(y_train, num_classes)

y_test_onehot = to_categorical(y_test, num_classes)

Build a conventional neural network model

model = Sequential()

model.add(Dense(512, input_shape=(X_train_tfidf.shape[1],), activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(256, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(num_classes, activation='softmax'))

Compile the model

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

Train the model

model.fit(X_train_tfidf, y_train_onehot, epochs=5, batch_size=32, validation_split=0.1)

Evaluate the model

loss, accuracy = model.evaluate(X_test_tfidf, y_test_onehot)

print('Test Loss:', loss)

print('Test Accuracy:', accuracy)

Explanation:

 import necessary modules from scikit-learn and Keras.

 load the 20 newsgroups dataset using `fetch_20newsgroups()` function.

 split the dataset into training and testing sets using `train_test_split()` function.

 convert text data to TF-IDF vectors using `TfidfVectorizer()` from scikit-learn.

 convert target labels to one-hot encoding using `to_categorical()` from Keras.

 build a conventional neural network model using `Sequential()` from Keras and add dense layers with ReLU

activation and dropout for regularization.

 compile the model with categorical crossentropy loss and Adam optimizer.

 train the model on the training data using `fit()` method.

 evaluate the model's performance on the test data using `evaluate()` method.

 International Journal of Advanced

 International Open-Access, Double

Copyright to IJARSCT DOI: 10.48175/

www.ijarsct.co.in

Impact Factor: 7.53

Figure: Conventional Neural Networks

Recurrent Neural Networks(RNNs)

Text classification using Recurrent Neural Networks (RNNs), specifically Long Short

networks, in Python with Keras.

Use the IMDB movie review dataset for sentiment analysis.

#python

import numpy as np

from keras.datasets import imdb

from keras.models import Sequential

from keras.layers import Embedding, LSTM, Dense

from keras.preprocessing.sequence import pad_sequences

Set parameters

max_features = 5000 # Number of words to consider as features

maxlen = 400 # Cut texts after this number of words

batch_size = 32

embedding_dims = 50

epochs = 2 # Increase this value for better accuracy

Load the data

(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)

Pad sequences to make them uniform length

x_train = pad_sequences(x_train, maxlen=maxlen)

x_test = pad_sequences(x_test, maxlen=maxlen)

Define the model

model = Sequential()

IJARSCT ISSN (Online) 2581

International Journal of Advanced Research in Science, Communication and Technology

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 4, Issue 6, April 2024

DOI: 10.48175/IJARSCT-17645

Figure: Conventional Neural Networks

Text classification using Recurrent Neural Networks (RNNs), specifically Long Short-Term Memory (LSTM)

Use the IMDB movie review dataset for sentiment analysis.

from keras.layers import Embedding, LSTM, Dense

from keras.preprocessing.sequence import pad_sequences

max_features = 5000 # Number of words to consider as features

en = 400 # Cut texts after this number of words

epochs = 2 # Increase this value for better accuracy

(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)

e them uniform length

x_train = pad_sequences(x_train, maxlen=maxlen)

x_test = pad_sequences(x_test, maxlen=maxlen)

ISSN (Online) 2581-9429

Technology (IJARSCT)

Reviewed, Refereed, Multidisciplinary Online Journal

 288

Term Memory (LSTM)

 International Journal of Advanced

 International Open-Access, Double

Copyright to IJARSCT DOI: 10.48175/

www.ijarsct.co.in

Impact Factor: 7.53

Embedding layer

model.add(Embedding(max_features, embedding_dims, input_length=maxlen))

LSTM layer

model.add(LSTM(100)) # You can adjust the number of LSTM units as per your requirement

Output layer

model.add(Dense(1, activation='sigmoid'))

Compile the model

model.compile(loss='binary_crossentropy',

optimizer='adam',

metrics=['accuracy'])

Train the model

model.fit(x_train, y_train,

batch_size=batch_size,

epochs=epochs,

validation_data=(x_test, y_test))

Evaluate the model

scores = model.evaluate(x_test, y_test, verbose=0)

print("Accuracy: %.2f%%" % (scores[1] * 100))

F

In conclusion, text classification stands as a cornerstone in Natural Language Processing (NLP), serving as a pivotal

tool for organizing, categorizing, and understanding textual data at scale.

Traditional machine learning algorithms like Naive Bayes, Support Vector Machines (SVM), and Decision Trees have

long been the cornerstone of text classification tasks, offering interpretable models and decent performance across

various datasets. However, with the advent of deep learn

IJARSCT ISSN (Online) 2581

International Journal of Advanced Research in Science, Communication and Technology

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 4, Issue 6, April 2024

DOI: 10.48175/IJARSCT-17645

model.add(Embedding(max_features, embedding_dims, input_length=maxlen))

model.add(LSTM(100)) # You can adjust the number of LSTM units as per your requirement

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy',

scores = model.evaluate(x_test, y_test, verbose=0)

print("Accuracy: %.2f%%" % (scores[1] * 100))

Figure: Recurrent Neural Networks

II. CONCLUSION

In conclusion, text classification stands as a cornerstone in Natural Language Processing (NLP), serving as a pivotal

tool for organizing, categorizing, and understanding textual data at scale.

algorithms like Naive Bayes, Support Vector Machines (SVM), and Decision Trees have

long been the cornerstone of text classification tasks, offering interpretable models and decent performance across

various datasets. However, with the advent of deep learning, particularly Convolutional Neural Networks (CNNs),

ISSN (Online) 2581-9429

Technology (IJARSCT)

Reviewed, Refereed, Multidisciplinary Online Journal

 289

In conclusion, text classification stands as a cornerstone in Natural Language Processing (NLP), serving as a pivotal

algorithms like Naive Bayes, Support Vector Machines (SVM), and Decision Trees have

long been the cornerstone of text classification tasks, offering interpretable models and decent performance across

ing, particularly Convolutional Neural Networks (CNNs),

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 4, Issue 6, April 2024

Copyright to IJARSCT DOI: 10.48175/IJARSCT-17645 290

www.ijarsct.co.in

Impact Factor: 7.53

Recurrent Neural Networks (RNNs), and their variants like LSTM and GRU, text classification has seen remarkable

advancements in accuracy and scalability.

Moreover, transfer learning techniques leveraging pre-trained language models, such as BERT, GPT, and their

derivatives, have revolutionized text classification by providing models with rich contextual understanding and the

ability to generalize across diverse domains with minimal task-specific training data.

REFERENCES:

[1]. Jurafsky, D., & Martin, J. H. (2019). Speech and Language Processing (3rd ed.). Pearson.

[2]. Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to Information Retrieval. Cambridge

University Press.

[3]. Bird, S., Klein, E., & Loper, E. (2009). Natural Language Processing with Python. O'Reilly Media.

[4]. Goldberg, Y. (2016). A Primer on Neural Network Models for Natural Language Processing. Journal of

Artificial Intelligence Research, 57, 345-420.

[5]. Young, T., Hazarika, D., Poria, S., & Cambria, E. (2018). Recent Trends in Deep Learning Based Natural

Language Processing. IEEE Computational Intelligence Magazine, 13(3), 55-75.

[6]. Zhang, Y., & Wallace, B. (2017). A Sensitivity Analysis of (and Practitioners' Guide to) Convolutional Neural

Networks for Sentence Classification. arXiv preprint arXiv:1510.03820.

[7]. Vaswani, A., et al. (2017). Attention Is All You Need. In Proceedings of the 31st International Conference on

Neural Information Processing Systems (NeurIPS).

[8]. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding. arXiv preprint arXiv:1810.04805

