

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 6, April 2024

# Text Classification in Natural Language Processing

# Venkata Mahesh Babu Batta

https://orcid.org/0000-0002-1029-6402 M.Tech, Department of CSE University College of Engineering, Osmania University, Hyderabad, Telangana, India

Abstract: This paper presents an overview of text classification techniques, focusing on the pre-processing steps, feature extraction methods, and model selection strategies employed in the process. Algorithms such as Naive Bayes, Support Vector Machines (SVM), logistic regression, and neural networks are used. Furthermore, recent advancements in deep learning models for text classification, including Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) are used. Comprehensive understanding of text classification methodologies in NLP and insights into current trends and challenges in the field are mentioned

Keywords: Natural Language Processing(NLP), Python

### I. INTRODUCTION

Naive Bayes algorithm using Python: Use the popular scikit-learn library #python from sklearn.datasets import fetch\_20newsgroups from sklearn.feature\_extraction.text import TfidfVectorizer from sklearn.naive\_bayes import MultinomialNB from sklearn.pipeline import make\_pipeline from sklearn.metrics import classification\_report, accuracy\_score from sklearn.model\_selection import train\_test\_split

# Load the 20 newsgroups dataset (a collection of newsgroup documents)
data = fetch\_20newsgroups(subset='all', shuffle=True, random\_state=42)

# Split the dataset into training and testing sets
X\_train, X\_test, y\_train, y\_test = train\_test\_split(data.data, data.target, test\_size=0.25, random\_state=42)

# Create a pipeline with TF-IDF vectorizer and Naive Bayes classifier model = make\_pipeline(TfidfVectorizer(), MultinomialNB())

# Train the model on the training data model.fit(X\_train, y\_train)

# Predict the labels for the test set
y\_pred = model.predict(X\_test)

# Evaluate the model
print("Accuracy:", accuracy\_score(y\_test, y\_pred))
print("\nClassification Report:")
print(classification\_report(y\_test, y\_pred, target\_names=data.target\_names))

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-17645



282



International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

#### Volume 4, Issue 6, April 2024

#### **Explanation:**

- start by importing necessary modules from scikit-learn.
- load the 20 newsgroups dataset using `fetch\_20newsgroups()` function.
- split the dataset into training and testing sets using `train\_test\_split()` function.
- create a pipeline consisting of a TF-IDF vectorizer and a Multinomial Naive Bayes classifier using `make\_pipeline()` function.
- train the model on the training data using `fit()` method.
- make predictions on the test data using `predict()` method.
- evaluate the model's performance by calculating accuracy and generating a classification report using `accuracy\_score()` and `classification\_report()` functions respectively.

| Command Prompt-python Nam<br>crosoft Windows [Versic<br>) Microsoft Corporation | n 10.0.1904   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |            |         |      |     |     |  |                         | - 0         | >   |
|---------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|---------|------|-----|-----|--|-------------------------|-------------|-----|
| ) Microsoft Corporation                                                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |            |         |      |     |     |  |                         |             |     |
| (USELS (Maries / Cu C. (USEL                                                    | s (manes (bow | 110803 (001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ĸ        |            |         |      |     |     |  |                         |             |     |
| \Users\mahes\Downloads\<br>curacy: 0.8425297113752                              |               | NaiveBaye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s.py     |            |         |      |     |     |  |                         |             |     |
| assification Report:                                                            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |            |         |      |     |     |  |                         |             |     |
|                                                                                 | precision     | recall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | f1-score | support    |         |      |     |     |  |                         |             |     |
| alt.atheism                                                                     | 0.88          | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.79     | 198        |         |      |     |     |  |                         |             |     |
| comp.graphics                                                                   | 0.86          | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.82     | 245        |         |      |     |     |  |                         |             |     |
| omp.os.ms-windows.misc                                                          | 0.88          | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.85     | 242        |         |      |     |     |  |                         |             |     |
| np.sys.ibm.pc.hardware                                                          | 0.66          | 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.75     | 238        |         |      |     |     |  |                         |             |     |
| comp.sys.mac.hardware                                                           | 0.95          | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.89     | 250        |         |      |     |     |  |                         |             |     |
| comp.windows.x                                                                  | 0.96          | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.87     | 260        |         |      |     |     |  |                         |             |     |
| misc.forsale                                                                    | 0.96          | 0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.78     | 241        |         |      |     |     |  |                         |             |     |
| rec.autos                                                                       | 0.89          | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.91     | 244        |         |      |     |     |  |                         |             |     |
| rec.motorcycles                                                                 | 0.91          | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.93     | 219        |         |      |     |     |  |                         |             |     |
| rec.sport.baseball                                                              | 0.96          | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.95     | 261        |         |      |     |     |  |                         |             |     |
| rec.sport.hockey                                                                | 0.90          | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.94     | 245        |         |      |     |     |  |                         |             |     |
| sci.crypt                                                                       | 0.78          | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.87     | 251        |         |      |     |     |  |                         |             |     |
| sci.electronics                                                                 | 0.92          | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.85     | 249        |         |      |     |     |  |                         |             |     |
| sci.med                                                                         | 0.97          | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.92     | 249        |         |      |     |     |  |                         |             |     |
| sci.space<br>oc.religion.christian                                              | 0.88<br>0.49  | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.93     | 240<br>245 |         |      |     |     |  |                         |             |     |
| talk.politics.guns                                                              | 0.49          | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00     | 245        |         |      |     |     |  |                         |             |     |
| talk.politics.mideast                                                           | 0.93          | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.85     | 230        |         |      |     |     |  |                         |             |     |
| talk.politics.misc                                                              | 1.00          | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.73     | 207        |         |      |     |     |  |                         |             |     |
| talk.religion.misc                                                              | 1.00          | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.28     | 164        |         |      |     |     |  |                         |             |     |
| cark.reiigion.misc                                                              | 1.00          | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.20     | 104        |         |      |     |     |  |                         |             |     |
| accuracy                                                                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.84     | 4712       |         |      |     |     |  |                         |             |     |
| macro avg                                                                       | 0.88          | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.83     | 4712       |         |      |     |     |  |                         |             |     |
| weighted avg                                                                    | 0.88          | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.84     | 4712       |         |      |     |     |  |                         |             |     |
|                                                                                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |            |         |      |     |     |  |                         |             |     |
|                                                                                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |            |         |      |     |     |  |                         |             |     |
|                                                                                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |            |         |      |     |     |  |                         |             |     |
|                                                                                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |            |         |      |     |     |  |                         |             |     |
|                                                                                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |            |         |      |     |     |  |                         |             |     |
|                                                                                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |            |         |      |     |     |  |                         |             |     |
|                                                                                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |            |         |      |     |     |  | Activate Window         |             |     |
|                                                                                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |            |         |      |     |     |  | Go to Settings to activ | ate Windows |     |
|                                                                                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |            |         |      |     |     |  |                         |             |     |
|                                                                                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |            |         |      |     |     |  |                         |             |     |
|                                                                                 | 12            | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | -          | -       |      | -   |     |  |                         | 8-71 PM     |     |
| P Type here to searchere                                                        | ch 🗧          | 🍋 🚊                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | a 💽        | <u></u> | - 49 | 🧿 🔚 | 1 🧿 |  | 💙 36°C \land 🖻 🌾        | 24-Apr-24   | . 5 |
|                                                                                 |               | and the second se |          |            |         |      |     |     |  |                         | 24-Apt-24   |     |

#### **Support Vector Machines:**

Text classification using Support Vector Machines (SVM) in Python with the scikit-learn library. use the 20 newsgroups dataset

#### #python

from sklearn.datasets import fetch\_20newsgroups from sklearn.feature\_extraction.text import TfidfVectorizer from sklearn.svm import SVC from sklearn.pipeline import make\_pipeline from sklearn.metrics import classification\_report, accuracy\_score from sklearn.model\_selection import train\_test\_split

# Load the 20 newsgroups dataset
data = fetch\_20newsgroups(subset='all', shuffle=True, random\_state=42)

Copyright to IJARSCT www.ijarsct.co.in





International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

#### Volume 4, Issue 6, April 2024

# Split the dataset into training and testing sets
X\_train, X\_test, y\_train, y\_test = train\_test\_split(data.data, data.target, test\_size=0.25, random\_state=42)

# Create a pipeline with TF-IDF vectorizer and Support Vector Machines classifier model = make\_pipeline(TfidfVectorizer(), SVC(kernel='linear'))

# Train the model on the training data model.fit(X\_train, y\_train)

# Predict the labels for the test set
y\_pred = model.predict(X\_test)

# Evaluate the model
print("Accuracy:", accuracy\_score(y\_test, y\_pred))
print("\nClassification Report:")
print(classification report(y test, y pred, target names=data.target names))

### **Explanation:**

- import necessary modules from scikit-learn.
- load the 20 newsgroups dataset using `fetch\_20newsgroups()` function.
- split the dataset into training and testing sets using `train\_test\_split()` function.
- create a pipeline consisting of a TF-IDF vectorizer and a Support Vector Machines classifier using `make\_pipeline()` function.
- train the model on the training data using `fit()` method.
- make predictions on the test data using `predict()` method.
- evaluate the model's performance by calculating accuracy and generating a classification report using `accuracy\_score()` and `classification\_report()` functions respectively.

Figure: Support Vector Machines

Logistic Regression:

Text classification using logistic regression in Python with scikit-learn, using the 20 newsgroups dataset.

#### #python

from sklearn.datasets import fetch\_20newsgroups from sklearn.feature\_extraction.text import TfidfVectorizer from sklearn.linear\_model import LogisticRegression from sklearn.pipeline import make\_pipeline from sklearn.metrics import classification\_report, accuracy\_score from sklearn.model selection import train test split

# Load the 20 newsgroups dataset
data = fetch\_20newsgroups(subset='all', shuffle=True, random\_state=42)

# Split the dataset into training and testing sets X\_train, X\_test, y\_train, y\_test = train\_test\_split(data.data, data.target, test\_size=0.25, random\_state=42)

Copyright to IJARSCT www.ijarsct.co.in





International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

#### Volume 4, Issue 6, April 2024

# Create a pipeline with TF-IDF vectorizer and Logistic Regression classifier model = make\_pipeline(TfidfVectorizer(), LogisticRegression(max\_iter=1000))

# Train the model on the training data model.fit(X\_train, y\_train)

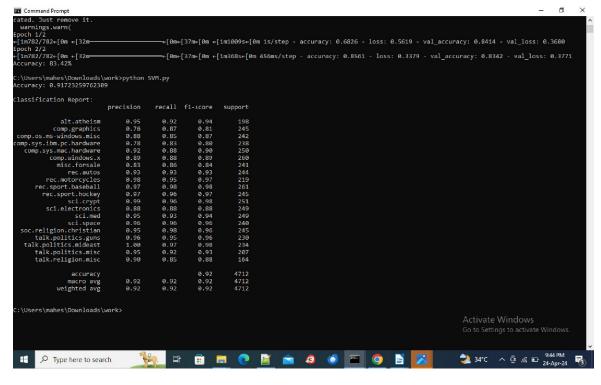
# Predict the labels for the test set
y\_pred = model.predict(X\_test)

# Evaluate the model
print("Accuracy:", accuracy\_score(y\_test, y\_pred))
print("\nClassification Report:")
print(classification\_report(y\_test, y\_pred, target\_names=data.target\_names))

Explanation:

- import necessary modules from scikit-learn.

- load the 20 newsgroups dataset using `fetch\_20newsgroups()` function.


- split the dataset into training and testing sets using `train\_test\_split()` function.

-create a pipeline consisting of a TF-IDF vectorizer and a Logistic Regression classifier using `make\_pipeline()` function.

- train the model on the training data using `fit()` method.

- make predictions on the test data using `predict()` method.

- evaluate the model's performance by calculating accuracy and generating a classification report using `accuracy\_score()` and `classification\_report()` functions respectively.



Copyright to IJARSCT www.ijarsct.co.in DOI: 10.48175/IJARSCT-17645



285



International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

#### Volume 4, Issue 6, April 2024

| Jsers\mahes>cd C:\User        | s\mahes\Dowr | loads\wor | k          |            |  |   |  |               |         |  |
|-------------------------------|--------------|-----------|------------|------------|--|---|--|---------------|---------|--|
| Jsers\mahes\Downloads\        |              | LogisticR | egression. | у          |  |   |  |               |         |  |
| iracy: 0.8921901528013        | 583          |           |            |            |  |   |  |               |         |  |
| sification Report:            | precision    | pocal1    | f1-score   | support    |  |   |  |               |         |  |
|                               | precision    | recall    | 11-Score   | Support    |  |   |  |               |         |  |
| alt.atheism                   | 0,90         | 0.89      | 0.90       | 198        |  |   |  |               |         |  |
| comp.graphics                 | 0.76         | 0.85      | 0.81       | 245        |  |   |  |               |         |  |
| p.os.ms-windows.misc          | 0.83         | 0.86      | 0.84       | 242        |  |   |  |               |         |  |
| .sys.ibm.pc.hardware          | 0.76         | 0.77      | 0.76       | 238        |  |   |  |               |         |  |
| omp.sys.mac.hardware          | 0.88         | 0.84      | 0.86       | 250        |  |   |  |               |         |  |
| comp.windows.x                | 0.90         | 0.86      | 0.88       | 260        |  |   |  |               |         |  |
| misc.forsale                  | 0.76         | 0.83      | 0.80       | 241        |  |   |  |               |         |  |
| rec.autos                     | 0.93         | 0.92      | 0.93       | 244        |  |   |  |               |         |  |
| rec.motorcycles               | 0.96         | 0.94      | 0.95       | 219        |  |   |  |               |         |  |
| rec.sport.baseball            | 0.96         | 0.97      | 0.97       | 261        |  |   |  |               |         |  |
| rec.sport.hockey<br>sci.crypt | 0.96         | 0.96      | 0.96       | 245<br>251 |  |   |  |               |         |  |
| sci.electronics               | 0.86         | 0.86      | 0.86       | 249        |  |   |  |               |         |  |
| sci.electronics<br>sci.med    | 0.00         | 0.00      | 0.00       | 249        |  |   |  |               |         |  |
| sci.space                     | 0.95         | 0.92      | 0.95       | 249        |  |   |  |               |         |  |
| c.religion.christian          | 0.87         | 0.96      | 0.94       | 246        |  |   |  |               |         |  |
| talk.politics.guns            | 0.92         | 0.90      | 0.92       | 230        |  |   |  |               |         |  |
| alk.politics.mideast          | 0.92         | 0.98      | 0.92       | 236        |  |   |  |               |         |  |
| talk.politics.misc            | 0.98         | 0.86      | 0.89       | 207        |  |   |  |               |         |  |
| talk.religion.misc            | 0.87         | 0.65      | 0.74       | 164        |  |   |  |               |         |  |
| accuracy                      |              |           | 0.89       | 4712       |  |   |  |               |         |  |
| macro avg                     | 0.89         | 0.89      | 0.89       | 4712       |  |   |  |               |         |  |
| weighted avg                  | 0.89         | 0.89      | 0.89       | 4712       |  |   |  |               |         |  |
|                               |              |           |            |            |  |   |  |               |         |  |
| Jsers\mahes\Downloads\        | work>        |           |            |            |  |   |  |               |         |  |
|                               |              |           |            |            |  |   |  |               |         |  |
|                               |              |           |            |            |  |   |  |               |         |  |
|                               |              |           |            |            |  |   |  |               |         |  |
|                               |              |           |            |            |  |   |  |               |         |  |
|                               |              |           |            |            |  |   |  | Activate V    | lindows |  |
|                               |              |           |            |            |  |   |  |               |         |  |
|                               |              |           |            |            |  |   |  | Go to Setting |         |  |
|                               |              |           |            |            |  |   |  |               |         |  |
|                               |              |           |            |            |  | _ |  | 💙 34°C 🗸      |         |  |
|                               |              |           |            |            |  |   |  |               |         |  |

#### Figure: Logistic Regression

#### **Conventional Neural Networks:**

Text classification using a conventional neural network (also known as a feedforward neural network or multilayer perceptron) in Python with Keras. use the 20 newsgroups dataset as before.

#### #python

import numpy as np
from sklearn.datasets import fetch\_20newsgroups
from sklearn.model\_selection import train\_test\_split
from sklearn.feature\_extraction.text import TfidfVectorizer
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.utils import to\_categorical

# Load the 20 newsgroups dataset
data = fetch\_20newsgroups(subset='all', shuffle=True, random\_state=42)

# Split the dataset into training and testing sets
X\_train, X\_test, y\_train, y\_test = train\_test\_split(data.data, data.target, test\_size=0.25, random\_state=42)

# Convert text data to TF-IDF vectors
vectorizer = TfidfVectorizer()
X\_train\_tfidf = vectorizer.fit\_transform(X\_train)
X\_test\_tfidf = vectorizer.transform(X\_test)

Copyright to IJARSCT www.ijarsct.co.in DOI: 10.48175/IJARSCT-17645



286



International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

#### Volume 4, Issue 6, April 2024

# Convert target labels to one-hot encoding num\_classes = len(np.unique(y\_train)) y\_train\_onehot = to\_categorical(y\_train, num\_classes) y\_test\_onehot = to\_categorical(y\_test, num\_classes)

# Build a conventional neural network model model = Sequential() model.add(Dense(512, input\_shape=(X\_train\_tfidf.shape[1],), activation='relu')) model.add(Dropout(0.5)) model.add(Dense(256, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(num\_classes, activation='softmax'))

# Compile the model model.compile(loss='categorical\_crossentropy', optimizer='adam', metrics=['accuracy'])

# Train the model model.fit(X\_train\_tfidf, y\_train\_onehot, epochs=5, batch\_size=32, validation\_split=0.1)

# Evaluate the model
loss, accuracy = model.evaluate(X\_test\_tfidf, y\_test\_onehot)
print('Test Loss:', loss)
print('Test Accuracy:', accuracy)

### **Explanation:**

- import necessary modules from scikit-learn and Keras.
- load the 20 newsgroups dataset using `fetch\_20newsgroups()` function.
- split the dataset into training and testing sets using `train\_test\_split()` function.
- convert text data to TF-IDF vectors using `TfidfVectorizer()` from scikit-learn.
- convert target labels to one-hot encoding using `to\_categorical()` from Keras.
- build a conventional neural network model using `Sequential()` from Keras and add dense layers with ReLU activation and dropout for regularization.
- compile the model with categorical crossentropy loss and Adam optimizer.
- train the model on the training data using `fit()` method.
- evaluate the model's performance on the test data using `evaluate()` method.





International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

#### Volume 4, Issue 6, April 2024

| Command Prompt - python CNN.py                         |              |            |             |               |               |                                  |                 |                               |                                   |                         |         |
|--------------------------------------------------------|--------------|------------|-------------|---------------|---------------|----------------------------------|-----------------|-------------------------------|-----------------------------------|-------------------------|---------|
|                                                        |              |            |             |               |               |                                  |                 |                               |                                   |                         | ٥       |
| soc.religion.christian                                 | 0.87         | 0.96       | 0.91        | 245           |               |                                  |                 |                               |                                   |                         |         |
| talk.politics.guns                                     | 0.92         | 0.93       | 0.92        | 230           |               |                                  |                 |                               |                                   |                         |         |
| talk.politics.mideast                                  | 0.98         | 0.98       | 0.98        | 234           |               |                                  |                 |                               |                                   |                         |         |
| talk.politics.misc                                     | 0.93         | 0.86       | 0.89        | 207           |               |                                  |                 |                               |                                   |                         |         |
| talk.religion.misc                                     | 0.87         | 0.65       | 0.74        | 164           |               |                                  |                 |                               |                                   |                         |         |
| accuracy                                               |              |            | 0.89        | 4712          |               |                                  |                 |                               |                                   |                         |         |
| macro avg                                              | 0.89         | 0.89       | 0.89        | 4712          |               |                                  |                 |                               |                                   |                         |         |
| weighted avg                                           | 0.89         | 0.89       | 0.89        | 4712          |               |                                  |                 |                               |                                   |                         |         |
|                                                        |              |            |             |               |               |                                  |                 |                               |                                   |                         |         |
|                                                        |              |            |             |               |               |                                  |                 |                               |                                   |                         |         |
| Jsers\mahes\Downloads\work                             |              |            |             |               |               |                                  |                 |                               |                                   |                         |         |
| -04-24 20:43:33.077257: 1                              | tensorflo    | w/core/uti | 1/port.co   | :113] oneDNM  | I custom oper | ations are on.                   | You may see s   | lightly di                    | fferent numerical                 | results du              | e to fl |
| -point round-off errors f                              |              |            |             |               |               |                                  |                 |                               |                                   |                         |         |
| -04-24 20:43:57.192808: 1                              |              |            |             |               |               |                                  |                 |                               |                                   | results du              | e to +1 |
| -point round-off errors f<br>sers\mahes\AppData\Local\ | rom aitter   | ent comput | ation ord   | ers. To turn  | them off, si  | et the environ                   | ment variable   | TF_ENABLE_                    | ONEDNN_OPTS=0                     |                         |         |
| argument to a layer. Whe                               |              |            |             |               |               |                                  |                 |                               |                                   | inpuc_snape             | -/ Inpr |
| per(). init (activity r                                | equierizer   | -activity  | regularia   | erer using a  | a) Input(Sna  | pey object as                    | the trist lay   | er in the n                   | ioder instead.                    |                         |         |
| h 1/5                                                  | egoral izel. | -accivicy_ | i eBorai 12 | er, kwarga    | <i>,</i>      |                                  |                 |                               |                                   |                         |         |
| 398/398⊷[0m ←[32m                                      |              |            |             | m41956 FAm 90 | Bms/sten = a  | couracy: 0 409                   | + - loss - 2 14 | 74 - val a                    | curacy: 0.9059 -                  | val loss.               | 8 3673  |
| 1 2/5                                                  |              |            |             |               |               |                                  |                 |                               |                                   |                         |         |
| 398/398+[0m +[32m                                      |              |            | 'm⊷[0m ⊷[1  | m284s←[0m 70  | 06ms/step - a | ccuracy: 0.963                   | 1 - loss: 0.16  | 22 - val ad                   | curacy: 0.9208 -                  | val loss:               | 0.2770  |
| h 3/5                                                  |              |            |             |               |               |                                  |                 |                               |                                   |                         |         |
| 398/398+[0m +[32m                                      |              | -+[0m+[37  | m+[0m +[1   | m312s+[0m 78  | 2ms/step - a  | ccuracy: 0.994                   | 6 - loss: 0.02  | 96 - val_ac                   | curacy: 0.9257 -                  | val_loss:               | 0.2729  |
| h 4/5                                                  |              |            |             |               |               |                                  |                 |                               |                                   |                         |         |
| 398/398+[0m +[32m                                      |              |            | 'm+[0m +[1  | m546s←[0m 1s  | /step - accu  | racy: 0.9979 -                   | loss: 0.0152    | <ul> <li>val_accur</li> </ul> | nacy: 0.9250 - va                 | 1_loss: 0.2             |         |
| h 5/5                                                  |              |            |             |               |               | A Contractor of the              |                 |                               |                                   | Maria and a second of a |         |
| 398/398←[0m +[32m<br>148/148←[0m +[32m                 |              |            |             |               |               | ccuracy: 0.998<br>racy: 0.9203 - |                 | 76 - val_ac                   | curacy: 0.9272 -                  | val_loss:               | 0.2881  |
| Loss: 0.3083120584487915                               | -            | -+[600+[33 | melom el t  | mozefom sous  | /scep - accu  | uarh: 018502 -                   | 1055: 0.5424    |                               |                                   |                         |         |
|                                                        | 2            |            |             |               |               |                                  |                 |                               |                                   |                         |         |
|                                                        |              |            |             |               |               |                                  |                 |                               |                                   |                         |         |
|                                                        | 3208         |            |             |               |               |                                  |                 |                               |                                   |                         |         |
|                                                        | 3208         |            |             |               |               |                                  |                 |                               |                                   |                         |         |
|                                                        | 3208         |            |             |               |               |                                  |                 |                               |                                   |                         |         |
|                                                        | 3208         |            |             |               |               |                                  |                 |                               |                                   |                         |         |
|                                                        | 3208         |            |             |               |               |                                  |                 |                               |                                   |                         |         |
|                                                        | 3208         |            |             |               |               |                                  |                 |                               |                                   |                         |         |
|                                                        | 3208         |            |             |               |               |                                  |                 |                               |                                   |                         |         |
|                                                        | 3208         |            |             |               |               |                                  |                 |                               |                                   |                         |         |
|                                                        | 3208         |            |             |               |               |                                  |                 |                               |                                   |                         |         |
|                                                        | 3208         |            |             |               |               |                                  |                 |                               | Activate Mir                      |                         |         |
|                                                        | 3208         |            |             |               |               |                                  |                 |                               | Activate Wir                      |                         |         |
|                                                        | 3208         |            |             |               |               |                                  |                 |                               | Activate Wir<br>Go to Settings ta |                         |         |
|                                                        | 3208         |            |             |               |               |                                  |                 |                               |                                   |                         |         |
| C 053: 0.30531203448/913<br>Accuracy: 0.928056001663   | 3208         |            |             |               |               |                                  |                 |                               |                                   |                         |         |
| Accuracy: 0.92805600166                                | 3208<br>100  | 1          | a -         |               |               |                                  |                 |                               |                                   | o activate Wi           | 20 P M  |
| Accuracy: 0.92805600166                                | 3208         | L H        | Ē .         | 1 🤁 🛓         | Y 💼 4         | ) (6) 🖻                          | 9 2             |                               |                                   | o activate Wi           |         |

Figure: Conventional Neural Networks

#### **Recurrent Neural Networks(RNNs)**

Text classification using Recurrent Neural Networks (RNNs), specifically Long Short-Term Memory (LSTM) networks, in Python with Keras.

Use the IMDB movie review dataset for sentiment analysis.

#### #python

import numpy as np from keras.datasets import imdb from keras.models import Sequential from keras.layers import Embedding, LSTM, Dense from keras.preprocessing.sequence import pad\_sequences

# Set parameters max\_features = 5000 # Number of words to consider as features maxlen = 400 # Cut texts after this number of words batch\_size = 32 embedding\_dims = 50 epochs = 2 # Increase this value for better accuracy

# Load the data
(x\_train, y\_train), (x\_test, y\_test) = imdb.load\_data(num\_words=max\_features)
# Pad sequences to make them uniform length
x\_train = pad\_sequences(x\_train, maxlen=maxlen)
x\_test = pad\_sequences(x\_test, maxlen=maxlen)

# Define the model
model = Sequential()

Copyright to IJARSCT www.ijarsct.co.in





International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

#### Volume 4, Issue 6, April 2024

# Embedding layer model.add(Embedding(max features, embedding dims, input length=maxlen))

# LSTM layer
model.add(LSTM(100)) # You can adjust the number of LSTM units as per your requirement

# Output layer
model.add(Dense(1, activation='sigmoid'))

# Compile the model model.compile(loss='binary\_crossentropy', optimizer='adam', metrics=['accuracy'])

# Train the model model.fit(x\_train, y\_train, batch\_size=batch\_size, epochs=epochs, validation data=(x test, y test))

# Evaluate the model
scores = model.evaluate(x\_test, y\_test, verbose=0)
print("Accuracy: %.2f%%" % (scores[1] \* 100))

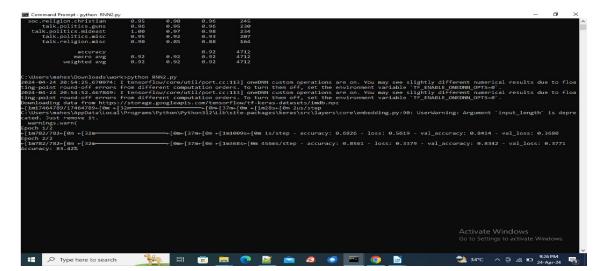



Figure: Recurrent Neural Networks

### **II. CONCLUSION**

In conclusion, text classification stands as a cornerstone in Natural Language Processing (NLP), serving as a pivotal tool for organizing, categorizing, and understanding textual data at scale.

Traditional machine learning algorithms like Naive Bayes, Support Vector Machines (SVM), and Decision Trees have long been the cornerstone of text classification tasks, offering interpretable models and decent performance across various datasets. However, with the advent of deep learning, particularly Convolutional Networks (CNNs),

Copyright to IJARSCT www.ijarsct.co.in





International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

#### Volume 4, Issue 6, April 2024

Recurrent Neural Networks (RNNs), and their variants like LSTM and GRU, text classification has seen remarkable advancements in accuracy and scalability.

Moreover, transfer learning techniques leveraging pre-trained language models, such as BERT, GPT, and their derivatives, have revolutionized text classification by providing models with rich contextual understanding and the ability to generalize across diverse domains with minimal task-specific training data.

### **REFERENCES:**

- [1]. Jurafsky, D., & Martin, J. H. (2019). Speech and Language Processing (3rd ed.). Pearson.
- [2]. Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to Information Retrieval. Cambridge University Press.
- [3]. Bird, S., Klein, E., & Loper, E. (2009). Natural Language Processing with Python. O'Reilly Media.
- [4]. Goldberg, Y. (2016). A Primer on Neural Network Models for Natural Language Processing. Journal of Artificial Intelligence Research, 57, 345-420.
- [5]. Young, T., Hazarika, D., Poria, S., & Cambria, E. (2018). Recent Trends in Deep Learning Based Natural Language Processing. IEEE Computational Intelligence Magazine, 13(3), 55-75.
- [6]. Zhang, Y., & Wallace, B. (2017). A Sensitivity Analysis of (and Practitioners' Guide to) Convolutional Neural Networks for Sentence Classification. arXiv preprint arXiv:1510.03820.
- [7]. Vaswani, A., et al. (2017). Attention Is All You Need. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NeurIPS).
- [8]. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv preprint arXiv:1810.04805

