

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 3, March 2024

A Class of Multivalent Functions Associated with. rth Differential Operator.

¹Jadhav. S. S and ²Khairnar S. L

¹Sundarrao More Arts, Commerce, and Science (Sr.) College, Poladpur ²Changu Kana Thakur, Arts, Commerce and Science College, Panvel

Abstract: This paper is concern with multivalent functions. We derived the new r^{th} differential operator. Associated with this operator new class of q-valent functions is studied. Sufficient condition for this class has been obtained.

Keywords: q-valent, multivalent, regular, operator

I. INTRODUCTION

LetR (q) be class of all regular and q-valent functions in the form

$$f(z) = z^{q} + \sum_{k=1}^{\infty} h_{k} z^{k+q}, \qquad (q \in \mathbb{N})$$
(1.1)

on open unit disc $D = \{z: |z| < 1\}$.

Goodman [6] and Chaughule[5] have studied necessary and sufficient condition and geometric properties for various subclasses of R(q). These classes includestarlike functions of finite order, close to convex, multivalently convex, etc.

II. MAIN RESULTS

This section is started with new class V(q, r). The class V(q, r) is associated with r^{th} differential operator.[8]. It is expressed as given below:

Definition2.1. Therth order differential operator [38] for the function f in R (q) is denoted by Q^r . It is given as:

$$Q^{r}f(z) = \frac{q!}{(q-r)!}z^{q-r} + \sum_{k=q+1}^{\infty} \frac{k!}{(k-r)!}h_{k}z^{k-r}$$
(1.2)

Where, $(q>r, q \in \mathbb{N}, r \in \mathbb{N}_0)$

Definition 2.2. A function in the form 1.1 in R (q) is said to be in the class V (q, r) if it satisfies inequality

$$|1 + \frac{zQ^{r+2}f(z)}{Q^{r+1}f(z)}(q-r)| < q-r-1$$
(1.3)

Where $z \in D$, $q \in \mathbb{N}$, q > r + 1

Further, we find the sufficient condition for this class V (q, r)

Theorem 2.1If the function $f(z) \in R(q)$ satisfies the condition

$$\left| \frac{1 + z \left(\frac{Q^{r+3}f(z)}{Q^{r+2}f(z)} - 1 + \frac{zQ^{r+2}f(z)}{Q^{r+1}f(z)} \right)}{z \left(\frac{Q^{r+2}f(z)}{Q^{r+1}f(z)} - \frac{Q^{r+3}f(z)}{Q^{r+2}} \right)} \right| < 1. \tag{1.4}$$

Where $z \in D$, $q \in \mathbb{N}$, q > r + 1

Then $f \in V(q, r)$.

Proof. Given that $f(z) = z^q + \sum_{k=1}^{\infty} h_k z^{k+q}$ having condition (1.4).

Define T (z) =
$$\frac{1}{q-r-1} \left(\frac{zQ^{r+2}f(z)}{Q^{r+1}f(z)} \right) - 1$$
.

IJARSCT

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.53

Volume 4, Issue 3, March 2024

Hence,
$$\frac{zQ^{r+2}f(z)}{Q^{r+1}f(z)} = (q-r-1)(1+T(z))$$

Clearly T(0) = 0

With some simplification, we get

$$\frac{zT'(z)}{1+T(z)} = \frac{zQ^{r+3}f(z)}{Q^{r+2}f(z)} + 1 - \frac{zQ^{r+2}f(z)}{Q^{r+1}f(z)}$$

.

$$\Rightarrow \frac{zQ^{r+3}f(z)}{Q^{r+2}f(z)} + 1 = \frac{zT'(z)}{1+T(z)} + (q-r-1)(1+t(z))$$

$$\Rightarrow \left| \frac{1 + z \left(\frac{Q^{r+3}f(z)}{Q^{r+2}f(z)} + \frac{zQ^{r+2}f(z)}{Q^{r+1}f(z)} \right)}{z \left(\frac{Q^{r+2}f(z)}{Q^{r+1}f(z)} - \frac{Q^{r+3}f(z)}{Q^{r+2}f(z)} \right)} \right| = \left| \frac{\frac{zT'(z)}{1+T(z)}}{1 - \frac{zT'(z)}{1+T(z)}} \right|$$

We now claim that $|T(z)| \le 1$, $z \in D$. Conversely we assume that $|T(z)| \ge 1$.

Then by Jack's lemma [7] there exist $z_1 \in D$ such that that $|T(z_1)| \ge 1$. and $z_1T'(z_1) = aT(z_1)$ for $a \ge 1$. Using (1.4)

$$\left| \frac{1 + z_1 \left(\frac{Q^{r+3} f(z_1)}{Q^{r+2} f(z_1)} - 1 + \frac{Q^{r+2} f(z_1)}{Q^{r+1} f(z)} \right)}{z_1 \left(\frac{Q^{r+2} f(z_1)}{Q^{r+1} f(z_1)} - \frac{Q^{r+3} f(z_1)}{Q^{r+2} f(z_1)} \right)} \right| = \left| \frac{\frac{z_1 T'(z_1)}{1 + T(z_1)}}{1 - \frac{z_1 T'(z_1)}{1 + T(z_1)}} \right|$$

$$= \left| \frac{\frac{aT'(z_1)}{1+T(z_1)}}{1-\frac{aT'(z_1)}{1+T(z_1)}} \right| = \left| \frac{aT(z_1)}{aT(z_1)-1-T(z_1)} \right| \geq 1.$$

This contradicts to (1.4). Hence T (z) \leq 1. For z in D.

Therefor $f \in V(q, r)$.

Example 1.1. If $f \in R(q)$ satisfying inequality

$$\left| \frac{1 + z \left(\frac{f^3(z)}{f^2(z)} - \frac{f^2 f(z)}{f^1(z)} \right)}{z \left(\frac{f^2(z)}{f^1(z)} - \frac{Q^{r+3} f(z)}{Q^{r+2} f(z)} \right)} \right| < 1$$

Where $z \in D, r \in \mathbb{N}_0, q > r + 1, q \in \mathbb{N}$,

The f is multivalently convex function in D.

REFERENCES

- [1] Ahuja O.P., (1985), Integral operator of certain univalent functions, Int. J.Math.Sci, 8,653-662.
- [2] Albehba M., Darus M., (2015), Subclass of meromorphic multivalent functions, Acta. Univ.Math.Inf. 43,157-167.
- [3] Alexander J.W., (1915), Functions which maps interior of unit circle upon simple region, Ann. Math, 17, 12-22.
- [4] Arif M., Ahmad K. J. Liu, Sokol J., (2019), New classes of analytic functions associated with salagean operator, J. of Funct. Spaces, Hindawi, ID, 6157394.
- [5] Chaughule V.A., Naik U.H., (2020), Some properties of new subclasses of multivalent functions, IJRAR, 6(2)
- [6]Goodman A.W.,(1979), An invitation to study of univalent and multivalent functions. Int . J. of Math and Math.Sci, 2, 163-186.
- [7] Jack I.S., (1971), Functions starlike and convex of order t, J.LondonMath.Soc, 2(3),469-474.
- [8] Juma A.R., (2008), Some problems connected with geometryof univalent and multivalent functions, PhD theis, University of Pune.
- [9] Kalpan W, (1952), Close to convex schlicht functions, Mich.Math.J., 1, 169-185.
- [10] Nunokawa M., (1987), Onth theory of multivalent functions, Tsukuba J.Math., 11,273,286.

73 286. ISSN 2581-9429 IJARSCT