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Abstract: In this paper, the problem of robust stabilizability of jerk chaotic control systems with mixed 

uncertainties is investigated. Combining robust control theory and differential-integral inequalities, a 

nonlinear controller will be derived and guaranteed to achieve the goal of practical stabilization. Besides, 

both the convergence radius and the exponential convergence rate can be specified in advance. Finally, 

some numerical simulation results are supplemented to demonstrate the correctness and effectiveness of the 

main result 
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I. INTRODUCTION 

In recent years, there have been many related studies on chaotic systems; see, for example, [1]-[12] and the references 

therein. The concept of practical stabilization has been first proposed in [7] and has been proven to be very effective in 

chaos suppression. Since the controller design of practical stabilization meets the requirements of both the transient 

response and the steady-state response of the system, it is indeed very effective in the design of controllers for chaotic 

systems. 

As we know, it is not an easy task to find a controller that can simultaneously overcome input nonlinearities and mixed 

uncertainties and suppress chaotic oscillations. Furthermore, a control system that can achieve any specified 

convergence radius and any specified exponential convergence rate at the same time has always been a dream goal of 

control engineers. To be fair, finding a controller that enables a closed-loop control system to achieve high-quality 

transient response and excellent steady-state response is definitely the dream of most control engineers, and it is also a 

task that is not easy to achieve. 

Motivated by the concept of practical stabilization, this paper intends to design a controller for a class of uncertain 

chaotic control system with multiple uncertainties, so that the closed-loop system can simultaneously achieve the pre-

specified convergence radius and exponential convergence rate. Throughout this paper, some symbols are defined as 

follows: 

a   the modulus of a complex number a 

I   the unit matrix 
TA   the transport of the matrix A 

x   the Euclidean norm of the vector x
n  

)(min A   the minimum eigenvalue of the matrix A with real eigenvalues 

)(A   the spectrum of the matrix A 

 

II. PROBLEM FORMULATION AND MAIN RESULT 

In this paper, we explore the well-known second-order uncertain jerk chaotic control systems with mixed uncertainties 

[2] described as 
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             0,,cos3
3

21  tuyyfwtqtyqtyqty  .  

The state variable expression of the above dynamic system is as follows: 

    txtx 21  , (1a) 

                 0,,cos 213
3
12212  ttutxtxfwtqtxqtxqtx  , (1b) 

where        12
21


T

txtxtx  is the state vector,   tu  is the input,     txtxf 21 ,  means the mixed 

uncertainties (parameter mismatchings and external excitations), and   tu  means the unknown input nonlinearity. 

To ensure the existence of the solutions of (1), we assume that the unknown terms  21, xxf  and  u  are all 

continuous functions. It is worth mentioning that system (1) exhibits chaotic behavior for certain parameter values 

when there are no uncertain terms (i.e.,     0, 21  uxxf  ) [2]. In this paper, we hope to design a controller 

that can not only overcome input nonlinearities, mixed uncertainties, and chaotic vibrations at the same time, but also 

achieve the goals of any specified convergence radius and any specified exponential convergence rate. 

For the uncertain terms  21, xxf  and  u , we make the following assumption:  

(A1) There exist continuous function   0, 21 xxf  and positive number 1r  such that, for all arguments, 

   2121 ,, xxfxxf  , 

  2
1uruu   . 

A precise definition of the practical stabilization is presented below. 

Definition 1 [7]: The uncertain system (1) is said to achieve the practical stabilization, provided that, for any 0  

and 0 , there exists a control   ,: uu   such that the state trajectory satisfies  

  0,   tetx t  
, 

for some 0 . In this situation, the positive number   is called the convergence radius and the positive number   

is called the exponential convergence rate. In other words, practical stabilization means that the state of system (1) can 

converge to the equilibrium point at 0x , with any prespecified convergence radius and exponential convergence 

rate. There is no doubt that the control system with small convergence radius and large exponential convergence rate 

has better steady-state response and transient response. 

 Now we put forward the main result for the practical stabilization of uncertain systems of (1). 

Theorem 1. The uncertain systems (1) with (A1) are practical stabilization under the following control  

      2213 xpxptrtu  , (2) 

    
   Prxpxpthr

th
tr

min
2

122131

2

:
 

 , (3) 

          2121

2

3
3
1221 ,121cos: xxfxxwtqxqxqth   , (4) 

where 0:
23

31 









pp

pp
P  is the unique solution to the following Lyapunov equation 

 
   

IPP

T

2
21

1

21

1
22 




















 






, (5) 

with 0  and 0 . In this situation, the guaranteed convergence radius and exponential convergence rate are   

and  , respectively. 
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Proof. From (1)-(5), the state equation of the entire closed-loop control system can be expressed as 

 

      

       ,0,221cos

221cos
1

0

221

10

21

2

3
3
1221

21

2

3
3
1221

2

























txxwtqxqxqfBAx

xxwtqxqxqf

xx








 

where 
  












221

10
: 2 

A  and 









1

0
:B . Apparently, one has    1  A , which implies 

IA   is Hurwitz and the Lyapunov equation of (5) has the unique posive definite solution P. Let  

       tPxtxtxV T . (6) 

The time derivative of   txV  along the trajectories of the system (1) with (2)-(5) can be derived as 

    
      21

2

3
3
1221 221cos2 xxwtqxqxqfPBx

xPAPAxtxV

T

TT








 

 

      fxxwtqxqxqPBx

PBxxIPx

T

TT





21

2

3
3
1221 221cos2

222




 

  PBxthPBxPxx TTT  222   

  PBxhu
r

Pxx TT 







 2

2
2   

  PBxhur
r

V T







 2

2
2 2

1  

PBxhPBxrrV TT  222
2

1  

2213

2

22131 222 xpxphxpxprrV    

  2213

min
2

122131

22

22131 2
2

2 xpxph
Prxpxphr

hxpxpr
V 







  

 
 Prxpxphr

Prxpxph
V

min
2

122131

min
2

122132
2









  

 
 

.0,
2

2
min

2
122131

min
2

122131

1





















 t

Prxpxphr

Prxpxphr

r
V




  (7) 

Combining the inequality 

,0, 









xxz

zy

yz
x  ,0y  and 0z  

and (7), we can obtain  

         .0,22 min
2  tPtxVtxV    
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It results that 

        ttt ePtxVetxVe   2
min

222 22    

      t
t

eP
dt

txVed 


 2
min

2
2

2 


  

            dtePdt
dt

txVed
xVtxVe

t
t

t t
t

 



0

2
min

2

0

2
2 20 


   

    .0,12
min

2  teP t  (8) 

It can be readily obtained that 

               .0,0 min
2

min
222

min   tPPxVetxVtxP t  
 

in view of (6) and (8). Consequently, we conclude that 

      
 

    
 

    
 

.0,
0

0

0

min

min
2

2

min

min
2

2

2

min

min
2

2








 









 









 








te
P

PxV

P

PxV
e

P

PxV
etx

t

t

t






















 

Thus the proof is completed.  □ 

Remark 1. 

We provide a procedure to find the robust control law stated in Theorem 1. 

INPUT:  The uncertain jerk chaotic control systems (1), the pre-specified exponential decay rate  , and the 

pre-specified convergence radius  . 

OUPUT:  Robust control of (2). 

Step one.  Choose   21, xxf  and  211 , xxr  such that (A1) is satisfied. 

Step two.  Calculate P,  Pmin , 2p , and 3p , from (5). 

Step three.  Form  th  from (4). 

Step four.  Form  tr  from (3). 

Step five.  OUPUT      2213 xpxptrtu  . 

 

III. NUMERICAL EXAMPLE 

Consider the following jerk chaotic control systems with mixed uncertainties: 

 21 xx  , (9a) 

       0,,cos 213
3
12212  tuxxfwtqxqxqx  , (9b) 

where 

06.01 q , 12 q , 53 q , 1w , 

    52
221 ,, ucubuxaxxf   , 

.0,51,11  cba  
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In this example, our goal is to design a feedback control such that the uncertain system (9) the practical stabilization 

with the exponential convergence rate 2  and the convergence radius 1.0 . 

Step one. When we choose   2
221, xxxf   and 11 r , obviously condition (A1) will be satisfied.  

Step two. From (5), we have  

   11,3,51.0,
311

1149
32min 








 ppPP  . 

Step three. From (4), it is easy to deduce that 

   2
221

3
12 69cos506.0: xxxtxxth  .  

Step four. From (3), we have  

    
  0102.0311

:
21

2




xxth

th
tr .  

Step five. The robust controller, from (2), can be obtained as 

      21 311 xxtrtu  . (10) 

Therefore, according to Theorem 1, we conclude that system (9) with the control (10) is practically stable, with the 

exponential convergence rate 2  and the guaranteed convergence radius 1.0 .Typical state trajectories of 

uncontrolled and controlled systems are shown in Figure 1 and 2, respectively. In addition, the time response of the 

control signal is shown in Figure 3. It can be seen from the above simulation results that the uncertain dynamic systems 

(9) combined with the controller (10) can indeed achieve practical stabilization. 

 

IV. CONCLUSION 

In this paper, the problem of robust stabilizability of jerk chaotic control systems with mixed uncertainties has been 

investigated. Combining robust control theory and differential-integral inequalities, a nonlinear controller has been 

derived and guaranteed to achieve the goal of practical stabilization. Besides, both the convergence radius and the 

exponential convergence rate can be specified in advance. Finally, some numerical simulation results have been 

supplemented to illustrate the effectiveness and correctness of the obtained results. 
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Figure 1: Typical state trajectories of the uncontrolled system of (9). 
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Figure 2: Typical state trajectories of the feedback-controlled system of (9) with (10). 

 

 
Figure 3: The time response of the control signal. 
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