
IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, October 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-13110 69

www.ijarsct.co.in

Impact Factor: 7.301

The Evolution of Computer Programming

Languages
Prathamesh Pratap Rane

Institute of Distance and Open Learning, Mumbai, Maharashtra, India

Abstract: This research paper aims to study the progression and evolution of Computer Languages. How

have evolved over time and also examines the evidence that newer programming languages are powerful

than older ones, take the best of what older languages have to offer, so that older languages weaknesses

can be eliminated and add the new strengths. The paper studies the progression of programming languages

by examining the features of the most prominent languages and how these features have been adopted by

newer languages. Finally, the paper presents a list of languages that may become the most popular

programming languages.

Keywords: Programming language progression, classifications, future of languages

I. INTRODUCTION

A language that used to set instructions for computer is known as programming language. It is a set of instructions that

tells the computer what to do. Programming languages are used to create software applications, websites, and other

computer programs.

The first programming languages were developed in the 1940s and 1950s. They were very simple and inefficient, but

they were a necessary step in the evolution of computer programming.

In the 1940s, programmers used machine-specific assembly languages to write code. These languages were difficult to

use and had many errors.The first modern programming language likeFORTRAN, was created in 1955. It was followed

by COBOL, LISP, and ALGOL. These four languages are the foundation of all modern programming languages.

 There are also many applications that are still written in these languages and are still sustain from1964, BASIC short

for beginner’s all-purpose Symbolic Instruction Codewas created in 1964, and C in 1969. C is a robust that is used to

write operating systems and its functions, like C is a programming language that is widely used in the development of

operating systems. UNIX and Linux are two operating systems that have a lot of code written in C

II. EVOLUTION OF COMPUTER LANGUAGES

The progression of programming languages can be divided into four main phases:

 The machine code era (1940s-1950s)

 The assembly language era (1950s-1960s)

 The high-level language era (1960s-present)

 The modern era (1990s-present)

2.1 THE MACHINE CODE AGE

The era of machine code marked the beginning of programming languages' development. The language that the

hardware of the computer can understand directly is called machine code. It is a very basic language that is challenging

to write and debug.

The first programming-languages was created using machine code. These languages were very simple and not so

powerful, but they were a necessary step in the progression of computer programming.

2.2 THE ASSEMBLY LANGUAGE AGE

The assembly language era followed the machine code period. Assembly language is a higher-level language than

machine code, but it is still a lower level language. Assembly language uses to represent machine code instructions.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, October 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-13110 70

www.ijarsct.co.in

Impact Factor: 7.301

This makes assembly language code more user-friendly and efficient. High-level languages are becoming more popular,

while assembly language is becoming less so.

2.3 THE HIGH-LEVEL LANGUAGE AGE

From 1960s the high-level language periods began. High level languages are easy to write and debug compare to

machine code or assembly language. High level programming languages are more easily movable than assembly,

meaning that they can be used without rewritten. This is because high level languages are not specific to any

architecture, while assembly language is specific.

Some of the most famous high level languages include:

 FORTRAN short forFormula Translation

 COBOL which is extended form Common Business Oriented Language

 BASIC short for Beginners All-purpose Symbolic Instruction Code

 PASCAL

 C

 C++

 JAVA

 PYTHON

 JavaScript

2.4 THE MODERN AGE

The modern age of programming languages started from 1990s. This era is marked by the creation of new programming

approaches, such as object-oriented and functional programming.

These languages are used to develop a wide range of applications, from web apps to mobile apps to desktop apps to

scientific computing apps.

The field of programming languages is rapidly changing, and it's thrilling to imagine what new possibilities the future

holds.

Some of the most famous programming languages in the modern ageare:

 JAVA

 PYTHON

 JAVASCRIPT

 C#

 RUBY

 SWIFT

 KOTLIN

 GO

 RUST

 JULIA

TABLE I. Programming Languages with its birth year.

NAME OF PROGRAMMING LANGUAGE YEAR

 REGIONAL ASSEMBLY LANGUAGE 1951

 AUTO CODE 1952

 IPL (FORERUNNER TO LISP) 1954

 FLOW-MATIC (LED TO COBOL) 1955

 FORTRAN (FIRST COMPILER) 1957

 COMTRAN (PRECURSOR TO COBOL) 1957

 LISP 1958

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, October 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-13110 71

www.ijarsct.co.in

Impact Factor: 7.301

 ALGOL 58 1958

 FACT (FORERUNNER TO COBOL) 1959

 COBOL 1959

 RPG 1959

 ALGOL 60 1960

 APL 1962

 SIMULA 1962

 SNOBOL 1962

 CPL (FORERUNNER TO C) 1963

 SPEAKEASY 1964

 BASIC 1964

 PL/I 1964

 JOSS 1966

 MUMPS 1966

 BCPL (FORERUNNER TO C) 1967

 LOGO (AN EDUCATIONAL LANGUAGE THAT LATER

INFLUENCED SMALLTALK AND SCRATCH). 1967

 BCPL (FORERUNNER TO B) 1967

 LOGO 1968

 B (FORERUNNER TO C) 1969

 PASCAL 1970

 FORTH 1970

 C 1972

 SMALLTALK 1972

 PROLOG 1972

 ML 1973

 SCHEME 1975

 SQL (A QUERY LANGUAGE, LATER EXTENDED) 1978

 C++ (AS C WITH CLASSES, RENAMED IN 1983) 1980

 ADA 1983

 COMMON LISP 1984

 MATLAB 1984

 DBASE III, DBASE III PLUS

(CLIPPER AND FOXPRO AS FOXBASE) 1984

 EIFFEL 1985

 OBJECTIVE-C 1986

 LABVIEW (VISUAL PROGRAMMING LANGUAGE) 1986

 ERLANG 1986

 PERL 1987

 PIC (MARKUP LANGUAGE) 1988

 TCL 1988

 WOLFRAM LANGUAGE (AS PART OF MATHEMATICA,

ONLY GOT A SEPARATE NAME IN JUNE 2013) 1988

 FL (BACKUS) 1989

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, October 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-13110 72

www.ijarsct.co.in

Impact Factor: 7.301

 HASKELL 1990

 PYTHON 1990

 VISUAL BASIC 1991

 LUA 1993

 R 1993

 CLOS (PART OF ANSI COMMON LISP) 1994

 RUBY 1995

 ADA 95 1995

 JAVA 1995

 DELPHI (OBJECT PASCAL) 1995

 JAVASCRIPT 1995

 PHP 1995

 OCAML 1996

 REBOL 1997

 ACTIONSCRIPT 2000

 C# 2001

 D 2001

 SCRATCH 2002

 GROOVY 2003

 SCALA 2003

 F# 2005

 HOLYC 2005

 POWERSHELL 2006

 CLOJURE 2007

 NIM 2008

 GO 2009

 DART 2011

 KOTLIN 2011

 JULIA 2012

 TYPESCRIPT 2012

 ELM 2012

 ELIXIR 2012

 SWIFT 2014

 RUST 2015

 RAKU 2015

 BOSQUE 2019

 MICROSOFT POWER FX 2021

TABLE II. NUMBER OF NEW PROGRAMMING LANGUAGES BORN, INYEAR-BANDS

S.No. Year No. of languages

1 1951 to 1960 12

2 1961 to 1970 16

3 1971 to 1980 07

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, October 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-13110 73

www.ijarsct.co.in

Impact Factor: 7.301

4 1981 to 1990 15

5 1991 to 2000 13

6 2001 to 2010 11

7 2010 to 2020 10

8 2020 to Present 01

III. TYPES OF PROGRAMMING LANGUAGES

1. By level of abstraction: Programming languages can be divided into below three levels of abstraction:

 Low-level languages: Low-level languages are used to communicate directly with the hardware since they are

near to the machine. Although they are challenging to understand and apply, they are incredibly effective.

Machine level language and assembly level language are a few of examples of low-level languages.

 Mid-level languages: A middle ground between low-level and high-level languages is represented by mid-

level languages. Compared to low-level languages, they are simpler to learn and use, but they are less

effective. C and C++ are two examples of mid-level programming languages.

 High-level languages: The most abstract languages, known as high-level languages, are used to extract

algorithms and data structures in a manner that is similar to human language. Although they are the simplest to

pick up and use, they are less effective than low-level languages. High-level languages include Python, Java,

and JavaScript, as examples.

2. By paradigm: The programming paradigm used by a language can be applecable to categorize it. A

programming paradigm is a type of programming that establishes the organization and composition of

programs. Some popular programming paradigms include:

 Object-oriented programming (OOP): Data and the methods that use it are viewed as objects in OOP

languages. Programmers can write reusable code and arrange programs in OOP languages in a way that is

simple to comprehend and maintain. OOP languages include Java, C++, and Python as examples.

 Functional programming: Functions are heavily emphasized in functional programming languages. Functional

languages use recursion rather than variables to solve issues. Applications in scientific computing and artificial

intelligence frequently use functional programming. Lisp and Haskell are two examples of functional

programming languages.

 Procedural programming: The foundation of procedural programming languages is the idea of procedures,

which are collections of instructions that are carried out one at a time. Although procedural languages are

simple to learn and use, maintaining and debugging them can be challenging. COBOL and BASIC are a

couple of examples of procedural programming languages.

3. By application: Programming languages can also be classified by their application domain. Some popular

application domains include:

 Desktop applications: Software applications that operate on desktop computers are called desktop applications.

Languages used for desktop applications include Python, C++, and Java.

 Web development: Websites and web applications are made using web development languages. The languages

used in web development include HTML, CSS, and JavaScript.

 Mobile applications: Software applications known as "mobile applications" run on tablets and smartphones.

Swift, Kotlin, and Java are a few examples of languages used for mobile applications.

 Artificial intelligence: Agents with artificial intelligence are developed using artificial intelligence languages.

Lisp and Prolog are two examples of artificial intelligence languages.

 Scientific computing: To resolve scientific and mathematical issues, scientific computing languages are

employed. Python, MATLAB, and R are a few examples of scientific programming languages.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, October 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-13110 74

www.ijarsct.co.in

Impact Factor: 7.301

IV. EXECUTION PROGRAMMING LANGUAGES

Some of the terms for execution of languages are:

 Processor- processor is a computer program which processes other computer programs.

 Compiler- A Compiler is "source code" - the code written in a programming language—into "object code," the

code that a computer can run.

 Interpreter- A computer processor that accepts source code programs, transforms them into easily executable

formats, and then executes them under supervision. Object code may or may not be the easily executable form.

 Translator- A processor which converts one source code into another.

1. Structures

The computer languages contain structures at the word level, the sentence level and the meaning associated with

sentence.

 Lexical structures: This is world level structures and decides about the token in the language. This is identify

by abstract machines and called finite automata.

 Syntax structures: These are sentence level structures, expressed by given by parse-tree, and identify by the

abstract machine push down automata.

 Semantic structures: It is given by association of nodes in parse-tree.

 Ambiguity in languages: If there is an situation where there is more than one syntax trees for the same

sentence then the language and the grammar is misleading.

2. Compiler Writing

This is the process of creating a compiler, which is a program that converts source code written in a high level into

machine code that a computer can execute.

A compiler is often divided into three phases:

 Lexical analysis: During this phase, the source code is broken down into tokens, which are the fundamental

building elements of the language.

 Syntax analysis: This phase involves checking the source code for syntax correctness.

 Semantic analysis: This step looks for semantic flaws in the source code, such as type mistakes and undefined

variables.

After analysing the source code, the compiler generates machine codes that the computer execute.

Compiler writing is a complex and difficult task, but it is also gratifying. Compilers are fundamental for the generation

of modern software and playcrucial role in computer science.

Below are the difficulties associated with compiler development:

 The Language: The compiler must grasp the syntax of the computer language being compiled.

 The optimization: The compiler must be able to optimize the generated machine code in order to increase its

performance.

 The target machine: The compiler must be capable of producing machine code compatible with the target

machine.

 The error handling: The compiler must be capable of detecting and reporting problems in the source code.

V. SCOPE OF PROGRAMMING LANGUAGES

Are the existing programming languages not enough?

There are so many programming languages already available to choose and use and build a computer program.

Still, new languages born year by year, but why?

The requirement for another programming language is determined by a variety of reasons, including the developers'

specialized needs and the target platform.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, October 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-13110 75

www.ijarsct.co.in

Impact Factor: 7.301

Developer requirements: Some developers may believe that the existing programming languages do not suit their

requirements. For example, they may require a more expressive language or one that is more suited to a specific sort of

application.

 The target platform: Some programming languages are better suited to specific target platforms than others.

C++, for example, is a strong choice for developing programs for embedded devices, whereas Python is a solid

choice for producing online applications.

 The availability of resources: The creation of a new programming language necessitates a large investment of

time and resources. If there are already existing languages that satisfy the needs of the developers and the

target platform, it may not be worth the expense to build a new language.

Ultimately, the decision of whether to develop a new programming language is a complex one that should be made case

wise.

Some reasons why new programming languages are still being created are as follows:

 Handling new issues: As technology grows, new challenges came up that need to the development of new

programming languages to address

 Enhancing performance: new programming languages can be develop to enhance the performance of current

languages like Rust is a new programming language that aims to be quicker and safer than C++.

 Adding additional features: New programming languages aredevelop to provide new features not found in

existing languages. A new programming language that is intended to be simple to learn and use.

 Testing new ideas: new programming languages might be created to test new concepts in programming

language design. Haskell, for example, is a new programming language that is intended to be fully functional.

Below are some specific programming languages that are expected to be popular in the future:

 PYTHON: Python was invented by Guido van Rossum in 1991. It is a general purpose language known for its

readability and simplicity. Python is used for many different things, including web development; data research,

and machine learning.

 JavaScript: JavaScript was developed by Brendan Eich in 1995. It is a scripting language that is used to make

web pages more interactive. JavaScript is also becoming more popular for the development of mobile and

desktop applications.

 Go: Robert Griesemer, Rob Pike, and Ken Thompson developed Go in 2009. It is a newer language that is

intended to be simple, efficient, and scalable. Go is becoming popular for creating cloud-native applications.

 Rust: Graydon Hoare designed the Rust programming language in 2010. It is a new language that is intended

to be secure, quick, and expressive. Rust is becoming increasingly popular for creating high-performance

applications.

 Julia: Jeff Bezanson, Stefan Karpinski, Viral B. Shah, Alan Edelman, and others created Julia in 2012. It is a

new language created for numerical computing. Julia is becoming well-known for her work on scientific and

financial applications.

 TypeScript: TypeScriptwas developed by Anders Hejlsberg in 2012. It is a JavaScript typed superset.

TypeScript is a language that is used to bring type safety to JavaScript code.

 Swift: Apple Inc. created Swift in 2014. It is a general-purpose programming language for macOS, iOS,

watchOS, and tvOS. Swift is well-known for its dependability and performance.

 Kotlin: JetBrains produced Kotlin in 2011. It is a general-purpose language created for the JVM. Kotlin is

well-known for its clarity and safety.

 Dart: Dart was created by Google in 2011. It is a general-purpose language created for the web. Dart is well-

known for its scalability and performance.

 Elm: Evan Czaplicki designed Elm in 2012. It is a functional programming language intended for web

development.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, October 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-13110 76

www.ijarsct.co.in

Impact Factor: 7.301

VI. CONCLUSION

This paper has presented the evolution of programming languages, Classification of Programming languages, future of

programming languages also we see some specific programming languages that are expected to be popular in the future.

Computer programming languages have changed over time to meet programmers' needs as well as business

expectations. Early languages were basic and ineffective, but they progressively evolved into more complex and

powerful languages. There are numerous programming languages accessible today, each with its own unique benefits

and drawbacks. The programming language used is determined by the needs of the programmer and the application

being built

REFERENCES

[1]. https://www.semion.io/doc/on-the-evolution-of-programming-languages.

[2]. https://en.wikipedia.org/wiki/History_of_programming_languages

[3]. https://www.extremetech.com/computing/91572-the-evolution-of-computer-languages-infographic

