

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 2, Issue 1, July 2022

Study on Properties of Certain Subclass of Univalent Functions with Negative Coefficients Related to Fractional Calculus Operator

Santosh V. Nakade

Department of Mathematics Sharda Mahavidyalaya, Parbhani, India

Abstract: In this Paper, we have discussed a subclass $TS(\gamma, \alpha, \mu, \lambda)$ of univalent functions with negative coefficients related to fractional calclus operator in the unit disk $\mathbb{U} = \{z \in \mathbb{C}: |z| < 1\}$. We obtain basic properties like coefficient inequality, distortion and covering theorem, radii of starlikeness, convexity and close-to-convexity, extreme points, Hadamard product, and closure theorems for functions belonging to our class.

Keywords: Univalent, Fractional Operator, Starlike, Extreme points, Hadmard Product

I. INTRODUCTION

Let A denote the class of all functions u(z) of the form

$$u(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1}$$

in the open unit disc $\mathbb{U} = \{z \in \mathbb{C}: |z| < 1\}$. Let S be the subclass of A consisting of univalent functions and satisfy the following usual normalization condition u(0) = u'(0) - 1 = 0. We denote by S the subclass of A consisting of functions u(z) which are all univalent in \mathbb{U} . A function $u \in A$ is a starlike function of the order $m, 0 \le m < 1$, if it satisfy

$$\Re\left\{\frac{zu'(z)}{u(z)}\right\} > m, z \in \mathbb{U}. \tag{2}$$

We denote this class with $S^*(m)$.

A function $u \in A$ is a convex function of the order m, $0 \le m < 1$, if it satisfy

$$\Re\left\{1 + \frac{zu''(z)}{u'(z)}\right\} > m, z \in \mathbb{U}. \tag{3}$$

We denote this class with K(m).

Note that $S^*(0) = S^*$ and K(0) = K are the usual classes of starlike and convex functions in \mathbb{U} respectively.

Let T denote the class of functions analytic in $\mathbb U$ that are of the form

$$u(z) = z - \sum_{n=2}^{\infty} a_n z^n, \quad a_n \ge 0 \ z \in \mathbb{U}$$
 (4)

and let $T^*(m) = T \cap S^*(m)$, $C(m) = T \cap K(m)$. The class $T^*(m)$ and allied classes possess some interesting properties and have been extensively studied by Silverman [14].

Many essentially equivalent definitions of fractional calculus have been given in the literature [15]. We state the following definitions due to Owa and Srivastava which have been used rather frequently in the theory of analytic functions.

ISO 9001:2015

Impact Factor: 6.252

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 2, Issue 1, July 2022

Definition 1.1: The fractional integral of order λ is defined, for a function (z), by

$$D_z^{-\lambda}u(z) = \frac{1}{\Gamma(\lambda)} \int_0^z \frac{f(\zeta)}{(z-\zeta)^{1-\lambda}} d\zeta, \quad (\lambda > 0)$$
 (5)

and the fractional derivative of order μ is defined, for a function u(z), by

$$D_z^{\lambda} u(z) = \frac{1}{\Gamma(1-\lambda)} \frac{d}{dz} \int_0^z \frac{f(\zeta)}{(z-\zeta)^{\lambda}} d\zeta, \quad (0 \le \lambda < 1)$$
 (6)

where u(z) is an analytic function in a simply-connected region of the z-plane containing the origin, and the multiplicity of $(z-\zeta)^{\lambda-1}$ involved in (and that of $(z-\zeta)^{-\lambda}$ involved in is removed by requiring $\log(z-\zeta)$ to be real when $(z-\zeta)>0$.

Definition 1.2: Under the hypotheses of Definition 6.1.1.the fractional derivative of order $n + \lambda$ is defined by

$$D_z^{n+\lambda} u(z) = \frac{d^n}{dz^n} D_z^{\lambda} u(z), \quad (0 \le \lambda < 1; n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}). \tag{7}$$

With the aid of the above definitions, Owa and Srivastava defined the fractional operator \mathcal{I}_z^{λ} by

$$\mathcal{J}_{z}^{\lambda}u(z) = \Gamma(2-\lambda)z^{\lambda}D_{z}^{\lambda}u(z), \ (\lambda \neq 2,3,4,\cdots)$$

$$=z+\sum_{n=2}^{\infty}\phi(\lambda,n)a_nz^n$$

where

$$\phi(\lambda, n) = \frac{\Gamma(n+1)\Gamma(2-\lambda)}{\Gamma(n-\lambda+1)}$$
And
$$\phi(\lambda, 2) = \frac{2}{(2-\lambda)}$$
(8)

Now, by making use of the linear operator $\mathcal{J}_z^{\lambda}u$, we define a new subclass of functions belonging to the class A. Now, we define a new subclass of functions belonging to the class A.

Definition 1.3: For $0 \le \gamma < 1, 0 \le \alpha < 1, 0 < \mu < 1$, and $0 \le \lambda < 1$, we let $TS(\gamma, \alpha, \mu, \lambda)$ be the subclass of u consisting of functions of the form (6.4) and its geometrical condition satisfy

$$\left| \frac{\gamma \left((\mathcal{J}_z^{\lambda} u(z))' - \frac{\mathcal{J}_z^{\lambda} u(z)}{z} \right)}{\alpha (\mathcal{J}_z^{\lambda} u(z))' + (1 - \gamma) \frac{\mathcal{J}_z^{\lambda} u(z)}{z}} \right| < \mu, \ \ z \in \mathbb{U}$$

where \mathcal{J}_z^{λ} , is given by (6.8)

2. Coefficient Inequality

In the following theorem, we obtain a necessary and sufficient condition for function to be in the class $TS(\gamma, \alpha, \mu, \lambda)$.

ISO 9001:2015

Impact Factor: 6.252

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429

Volume 2, Issue 1, July 2022

Theorem 2.1: Let the function u be defined by . Then $u \in TS(\gamma, \alpha, \mu, \lambda)$ if and only if

$$\sum_{n=2}^{\infty} [\gamma(n-1) + \mu(n\alpha + 1 - \gamma)]\phi(n,\lambda)a_n \le \mu(\alpha + (1-\gamma)), \tag{10}$$

where $0 < \mu < 1, 0 \le \gamma < 1, 0 \le \alpha < 1$, and $0 \le \lambda < 1$. The result (10) is sharp for the function

$$u(z)=z-\frac{\mu(\alpha+(1-\gamma))}{[\gamma(n-1)+\mu(n\alpha+1-\gamma)]\phi(n,\lambda)}z^n,\ n\geq 2.$$

Proof. Suppose that the inequality holds true and |z| = 1. Then we obtain

$$\left| \gamma \left(\left(\mathcal{J}_{z}^{\lambda} u(z) \right)' - \frac{\mathcal{J}_{z}^{\lambda} u(z)}{z} \right) \right| - \mu \left| \alpha \left(\mathcal{J}_{z}^{\lambda} u(z) \right)' + (1 - \gamma) \frac{\mathcal{J}_{z}^{\lambda} u(z)}{z} \right) \right|$$

$$= \left| -\gamma \sum_{n=2}^{\infty} (n-1) \phi(n,\lambda) a_{n} z^{n-1} \right|$$

$$-\mu \left| \alpha + (1 - \gamma) - \sum_{n=2}^{\infty} (n\alpha + 1 - \gamma) \phi(n,\lambda) a_{n} z^{n-1} \right|$$

$$\leq \sum_{n=2}^{\infty} [\gamma(n-1) + \mu(n\alpha + 1 - \gamma)] \phi(n,\lambda) a_{n} - \mu(\alpha + (1 - \gamma))$$

$$\leq 0$$

Hence, by maximum modulus principle, $u \in TS(\gamma, \alpha, \mu, \lambda)$. Now assume that $u \in TS(\gamma, \alpha, \mu, \lambda)$ so that

$$\left| \frac{\gamma \left((\mathcal{J}_z^{\lambda} u(z))' - \frac{\mathcal{J}_z^{\lambda} u(z)}{z} \right)}{\alpha (\mathcal{J}_z^{\lambda} u(z))' + (1 - \gamma) \frac{\mathcal{J}_z^{\lambda} u(z)}{z}} \right| < \mu, \ \ z \in \mathbb{U}$$

Hence

$$\left|\gamma\left((\mathcal{J}_z^{\lambda}u(z))'-\frac{\mathcal{J}_z^{\lambda}u(z)}{z}\right)\right|<\mu\left|\alpha\left(\mathcal{J}_z^{\lambda}u(z))'+(1-\gamma)\frac{\mathcal{J}_z^{\lambda}u(z)}{z}\right)\right|.$$

Therefore, we get

$$\left| -\sum_{n=2}^{\infty} \gamma(n-1)\phi(n,\lambda)a_n z^{n-1} \right| < \mu \left| \alpha + (1-\gamma) - \sum_{n=2}^{\infty} (n\alpha + 1 - \gamma)\phi(n,\lambda)a_n z^{n-1} \right|.$$

Thus

$$\sum_{n=2}^{\infty} [\gamma(n-1) + \mu(n\alpha + 1 - \gamma)] \phi(n, \lambda) a_n \le \mu(\alpha + (1 - \gamma))$$

and this completes the proof.

Corollary 2.1: Let the function $u \in TS(\gamma, \alpha, \mu, \lambda)$. Then

$$a_n \le \frac{\mu(\alpha + (1 - \gamma))}{[\gamma(n - 1) + \mu(n\alpha + 1 - \gamma)]\phi(n, \lambda)} z^n, \quad n \ge 2.$$
 (11)

3. Distortion and Covering Theorem:

We introduce the growth and distortion theorems for the functions in the class $TS(\gamma, \alpha, \mu, \lambda)$

ISO 9001:2015

Impact Factor: 6.252

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429

Volume 2, Issue 1, July 2022

Theorem 3.1: Let the function $u \in TS(\gamma, \alpha, \mu, \lambda)$. Then

$$|z| - \frac{\mu(\alpha + (1 - \gamma))}{\phi(2, \lambda)[\gamma + \mu(2\alpha + 1 - \gamma)]}|z|^2$$

$$\leq |u(z)|$$

$$\leq |z| + \frac{\mu(\alpha + (1 - \gamma))}{\phi(2, \lambda)[\gamma + \mu(2\alpha + 1 - \gamma)]}|z|^2$$

The result is sharp and attained

$$u(z) = z - \frac{\mu(\alpha + (1 - \gamma))}{\phi(2, \lambda)[\gamma + \mu(2\alpha + 1 - \gamma)]}z^{2}.$$

Proof.

$$|u(z)| = \left|z - \sum_{n=2}^{\infty} a_n z^n\right| \le |z| + \sum_{n=2}^{\infty} a_n |z|^n$$

$$\leq |z| + |z|^2 \sum_{n=2}^{\infty} a_n$$

By Theorem 2.1, we get

$$\sum_{n=2}^{\infty} a_n \le \frac{\mu(\alpha + (1-\gamma))}{[\gamma + \mu(2\alpha + 1-\gamma)]\phi(n,\lambda)}.$$
 (12)

Thus

$$|u(z)| \le |z| + \frac{\mu(\alpha + (1 - \gamma))}{\phi(2, \lambda)[\gamma + \mu(2\alpha + 1 - \gamma)]} |z|^2.$$

Also

$$|u(z)| \ge |z| - \sum_{n=2}^{\infty} a_n |z|^n$$

$$\ge |z| - |z|^2 \sum_{n=2}^{\infty} a_n$$

$$\ge |z| - \frac{\mu(\alpha + (1 - \gamma))}{\phi(2, \lambda)[\gamma + \mu(2\alpha + 1 - \gamma)]} |z|^2.$$

Theorem 3.2: .Let $u \in TS(\gamma, \alpha, \mu, \lambda)$. Then

$$1-\frac{2\mu(\alpha+(1-\gamma))}{\phi(2,\lambda)[\gamma+\mu(2\alpha+1-\gamma)]}|z|\leq |u'(z)|\leq 1+\frac{2\mu(\alpha+(1-\gamma))}{\phi(2,\lambda)[\gamma+\mu(2\alpha+1-\gamma)]}|z|$$

with equality for

$$u(z) = z - \frac{2\mu(\alpha + (1 - \gamma))}{\phi(2, \lambda)[\gamma + \mu(2\alpha + 1 - \gamma)]}z^2.$$

Proof: Notice that

ISSN 2581-9429 IJARSCT

International Journal of Advanced Research in Science, Communication and Technology

Impact Factor: 6.252

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 2, Issue 1, July 2022

 $\phi(2,\lambda)[\gamma + \mu(2\alpha + 1 - \gamma)] \sum_{n=2}^{\infty} n \, a_n$ $\leq \sum_{n=2}^{\infty} n \left[\gamma(n-1) + \mu(n\alpha+1-\gamma) \right] \phi(n,\lambda) a_n$

from Theorem 3.1., Thus

$$|u'(z)| = \left|1 - \sum_{n=2}^{\infty} na_n z^{n-1}\right|$$

$$\leq 1 + \sum_{n=2}^{\infty} n \, a_n |z|^{n-1}$$

$$\leq 1 + |z| \sum_{n=2}^{\infty} n \, a_n$$

$$\leq 1 + |z| \frac{2\mu(\alpha + (1-\gamma))}{\phi(2,\lambda)[\gamma + \mu(2\alpha + 1-\gamma)]} \tag{13}$$

On the other hand

$$|u'(z)| = \left|1 - \sum_{n=2}^{\infty} na_n z^{n-1}\right|$$

$$\geq 1 - \sum_{n=2}^{\infty} n \, a_n |z|^{n-1}$$

$$\geq 1 - |z| \sum_{n=2}^{\infty} n \, a_n$$

$$\geq 1 - |z| \frac{2\mu(\alpha + (1-\gamma))}{\phi(2,\lambda)[\gamma + \mu(2\alpha + 1 - \gamma)]} \tag{14}$$

Combining (13) and (14), we get the result.

4. Radii of Starlikeness, Convexity and Close-to-Convexity:

In the following theorems, we obtain the radii of starlikeness, convexity and close-to-convexity for the class $TS(\gamma, \alpha, \mu, \lambda)$.

Theorem 4.1: Let $u \in TS(\gamma, \alpha, \mu, \lambda)$. Then u is starlike in $|z| < R_1$ of order δ , $0 \le \delta < 1$, where

$$R_{1} = \inf_{n} \left\{ \frac{(1-\delta)(\gamma(n-1) + \mu(n\alpha+1-\gamma))\phi(n,\lambda)}{(n-\delta)\mu(\alpha+(1-\gamma))} \right\}^{\frac{1}{n-1}}, \ n \ge 2.$$
 (15)

Copyright to IJARSCT www.ijarsct.co.in

ISO 9001:2015

Impact Factor: 6.252

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 2, Issue 1, July 2022

Proof. *u* is starlike of order δ , $0 \le \delta < 1$ if

$$\Re\left\{\frac{zu'(z)}{u(z)}\right\} > \delta.$$

Thus it is enough to show that

$$\left|\frac{zu'(z)}{u(z)} - 1\right| = \left|\frac{-\sum_{n=2}^{\infty} (n-1)a_n z^{n-1}}{1 - \sum_{n=2}^{\infty} a_n \, z^{n-1}}\right| \le \frac{\sum_{n=2}^{\infty} (n-1)a_n |z|^{n-1}}{1 - \sum_{n=2}^{\infty} a_n \, |z|^{n-1}}.$$

Thus

$$\left|\frac{zu'(z)}{u(z)} - 1\right| \le 1 - \delta \quad if \quad \sum_{n=2}^{\infty} \frac{(n-\delta)}{(1-\delta)} a_n |z|^{n-1} \le 1. \tag{16}$$

Hence by Theorem 2.1, (16) will be true if

$$\frac{n-\delta}{1-\delta}|z|^{n-1} \leq \frac{(\gamma(n-1) + \mu(n\alpha+1-\gamma))\phi(n,\lambda)}{\mu(\alpha+(1-\gamma)}$$

or if

$$|z| \le \left[\frac{(1-\delta)(\gamma(n-1)+\mu(n\alpha+1-\gamma))\phi(n,\lambda)}{(n-\delta)\mu(\alpha+(1-\gamma))} \right]^{\frac{1}{n-1}}, n \ge 2.$$
 (17)

The theorem follows easily from (17)

Theorem 4.2: Let $u \in TS(\gamma, \alpha, \mu, \lambda)$. Then u is convex in $|z| < R_2$ of order $\delta, 0 \le \delta < 1$, where

$$R_{2} = \inf_{n} \left\{ \frac{(1-\delta)(\gamma(n-1) + \mu(n\alpha + 1 - \gamma))\phi(n,\lambda)}{n(n-\delta)\mu(\alpha + (1-\gamma))} \right\}^{\frac{1}{n-1}}, \quad n \ge 2.$$
 (18)

Proof: u is convex of order δ , $0 \le \delta < 1$ if

$$\Re\left\{1+\frac{zu''(z)}{u'(z)}\right\} > \delta.$$

Thus it is enough to show that

$$\left| \frac{zu''(z)}{u'(z)} \right| = \left| \frac{-\sum_{n=2}^{\infty} n (n-1) a_n z^{n-1}}{1 - \sum_{n=2}^{\infty} n a_n z^{n-1}} \right| \le \frac{\sum_{n=2}^{\infty} n (n-1) a_n |z|^{n-1}}{1 - \sum_{n=2}^{\infty} n a_n |z|^{n-1}}.$$

Thus

$$\left| \frac{zu''(z)}{u'(z)} \right| \le 1 - \delta \ if \ \sum_{n=2}^{\infty} \frac{n(n-\delta)}{(1-\delta)} a_n |z|^{n-1} \le 1.$$
 (19)

Hence by Theorem 2.1, (19) will be true if

$$\frac{n(n-\delta)}{1-\delta}|z|^{n-1} \le \frac{(\gamma(n-1) + \mu(n\alpha + 1 - \gamma))\phi(n,\lambda)}{\mu(\alpha + (1-\gamma))}$$

or if

$$|z| \le \left[\frac{(1-\delta)(\gamma(n-1) + \mu(n\alpha + 1 - \gamma))\phi(n,\lambda)}{n(n-\delta)\mu(\alpha + (1-\gamma))} \right]^{\frac{1}{n-1}}, n \ge 2.$$
 (20)

The theorem follows from (20)

International Journal of Advanced Research in Science, Communication and Technology

Impact Factor: 6.252

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429

Volume 2, Issue 1, July 2022

Theorem 4.3: Let $u \in TS(\gamma, \alpha, \mu, \lambda)$. Then u is close-to-convex in $|z| < R_3$ of order δ , $0 \le \delta < 1$, where

$$R_{3} = \inf_{n} \left\{ \frac{(1-\delta)(\gamma(n-1) + \mu(n\alpha+1-\gamma))\phi(n,\lambda)}{n\mu(\alpha+(1-\gamma))} \right\}^{\frac{1}{n-1}}, \quad n \ge 2.$$
 (21)

Proof: u is close-to-convex of order δ , $0 \le \delta < 1$ if

$$\Re\{u'(z)\}>\delta.$$

Thus it is enough to show that

$$|u'(z) - 1| = \left| -\sum_{n=2}^{\infty} n a_n z^{n-1} \right| \le \sum_{n=2}^{\infty} n a_n |z|^{n-1}.$$

Thus

$$|u'(z) - 1| \le 1 - \delta \ if \ \sum_{n=2}^{\infty} \frac{n}{(1 - \delta)} a_n |z|^{n-1} \le 1.$$
 (22)

Hence by Theorem 2.1, (22) will be true if

$$\frac{n}{1-\delta}|z|^{n-1} \leq \frac{(\gamma(n-1) + \mu(n\alpha+1-\gamma))\phi(n,\lambda)}{\mu(\alpha+(1-\gamma)}$$

or if

$$|z| \le \left[\frac{(1-\delta)(\gamma(n-1) + \mu(n\alpha+1-\gamma))\phi(n,\lambda)}{n\mu(\alpha+(1-\gamma))} \right]^{\frac{1}{n-1}}, n \ge 2.$$
 (23)

The theorem follows from (23)

5. Extreme Points:

In the following theorem, we obtain extreme points for the class $TS(\gamma, \alpha, \mu, \lambda)$.

Theorem 5.1: Let $u_1(z) = z$ and

$$u_n(z) = z - \frac{\mu(\alpha + (1 - \gamma))}{[\gamma(n - 1) + \mu(n\alpha + 1 - \gamma)]\phi(n, \lambda)} z^n$$
, for $n = 2, 3, \dots$

Then $u \in TS(\gamma, \alpha, \mu, \lambda)$ if and only if it can be expressed in the form

$$u(z) = \sum_{n=1}^{\infty} \theta_n u_n(z)$$
, where $\theta_n \ge 0$ and $\sum_{n=1}^{\infty} \theta_n = 1$.

Proof: Assume that $u(z) = \sum_{n=1}^{\infty} \theta_n u_n(z)$, hence we get

$$u(z) = z - \sum_{n=2}^{\infty} \frac{\mu(\alpha + (1-\gamma))\theta_n}{[\gamma(n-1) + \mu(n\alpha + 1-\gamma)]\phi(n,\lambda)} z^n.$$

Now, $u \in TS(\gamma, \alpha, \mu, \lambda)$, since

Copyright to IJARSCT

www.ijarsct.co.in

$$\sum_{n=2}^{\infty} \frac{[\gamma(n-1) + \mu(n\alpha+1-\gamma)]\phi(n,\lambda)}{\mu(\alpha+(1-\gamma))} \times \frac{\mu(\alpha+(1-\gamma))\theta_n}{[\gamma(n-1) + \mu(n\alpha+1-\gamma)]\phi(n,\lambda)}$$

$$=\sum_{n=2}^{\infty}\theta_n=1-\theta_1\leq 1$$

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 6.252

Volume 2, Issue 1, July 2022

Conversely, suppose $u \in TS(\gamma, \alpha, \mu, \lambda)$. Then we show that u can be written in the form $\sum_{n=1}^{\infty} \theta_n u_n(z)$. Now $u \in TS(\gamma, \alpha, \mu, \lambda)$ implies from Theorem 2.1.

$$a_n \leq \frac{\mu(\alpha + (1 - \gamma))}{[\gamma(n - 1) + \mu(n\alpha + 1 - \gamma)]\phi(n, \lambda)}.$$

Setting

$$\theta_n = \frac{[\gamma(n-1) + \mu(n\alpha+1-\gamma)]\phi(n,\lambda)}{\mu(\alpha+(1-\gamma))}a_n, n = 2,3,\cdots$$

and $\theta_1 = 1 - \sum_{n=2}^{\infty} \theta_n$, we obtain $u(z) = \sum_{n=1}^{\infty} \theta_n u_n(z)$.

6. Hadamard product:

In the following theorem, we obtain the convolution result for functions belongs to the class $TS(\gamma, \alpha, \mu, \lambda)$.

Theorem 6.1: Let $u, g \in TS(\gamma, \alpha, \mu, \lambda)$. Then $u * g \in TS(\gamma, \alpha, \zeta, \lambda)$ for

$$u(z) = z - \sum_{n=2}^{\infty} a_n z^n, g(z) = z - \sum_{n=2}^{\infty} b_n z^n \text{ and } (u * g)(z) = z - \sum_{n=2}^{\infty} a_n b_n z^n,$$

where

$$\zeta \ge \frac{\mu^2(\alpha + (1-\gamma))\gamma(n-1)}{[\gamma(n-1) + \mu(n\alpha + 1-\gamma)]^2\phi(n,\lambda) - \mu^2(\alpha + (1-\gamma))(n\alpha + 1-\gamma)}.$$

Proof:

 $u \in TS(\gamma, \alpha, \mu, \lambda)$ and so

$$\sum_{n=2}^{\infty} \frac{[\gamma(n-1) + \mu(n\alpha + 1 - \gamma)]\phi(n,\lambda)}{\mu(\alpha + (1 - \gamma))} a_n \le 1, \tag{24}$$

and

$$\sum_{n=2}^{\infty} \frac{[\gamma(n-1) + \mu(n\alpha + 1 - \gamma)]\phi(n,\lambda)}{\mu(\alpha + (1 - \gamma))} b_n \le 1.$$
 (25)

We have to find the smallest number ζ such that

$$\sum_{n=2}^{\infty} \frac{[\gamma(n-1)+\zeta(n\alpha+1-\gamma)]\phi(n,\lambda)}{\zeta(\alpha+(1-\gamma))} a_n b_n \le 1.$$
 (26)

By Cauchy-Schwarz inequality

$$\sum_{n=2}^{\infty} \frac{[\gamma(n-1) + \mu(n\alpha + 1 - \gamma)]\phi(n,\lambda)}{\mu(\alpha + (1 - \gamma))} \sqrt{a_n b_n} \le 1.$$
 (27)

Therefore it is enough to show that

$$\frac{ [\gamma(n-1)+\zeta(n\alpha+1-\gamma)]\phi(n,\lambda)}{\zeta(\alpha+(1-\gamma))} a_n b_n \\ \leq \frac{ [\gamma(n-1)+\mu(n\alpha+1-\gamma)]\phi(n,\lambda)}{\mu(\alpha+(1-\gamma))} \sqrt{a_n b_n}.$$

That is

$$\sqrt{a_n b_n} \le \frac{[\gamma(n-1) + \mu(n\alpha + 1 - \gamma)]\zeta}{[\gamma(n-1) + \zeta(n\alpha + 1 - \gamma)]\mu}.$$
(28)

From

$$\sqrt{a_n b_n} \le \frac{\mu(\alpha + (1 - \gamma))}{[\gamma(n - 1) + \mu(n\alpha + 1 - \gamma)]\phi(n, \lambda)}.$$

International Journal of Advanced Research in Science, Communication and Technology

Impact Factor: 6.252

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 2, Issue 1, July 2022

Thus it is enough to show that

$$\frac{\mu(\alpha+(1-\gamma))}{[\gamma(n-1)+\mu(n\alpha+1-\gamma)]\phi(n,\lambda)} \leq \frac{[\gamma(n-1)+\mu(n\alpha+1-\gamma)]\zeta}{[\gamma(n-1)+\zeta(n\alpha+1-\gamma)]\mu'}$$

which simplifies to

$$\zeta \ge \frac{\mu^2(\alpha + (1-\gamma))\gamma(n-1)}{[\gamma(n-1) + \mu(n\alpha + 1-\gamma)]^2\phi(n,\lambda) - \mu^2(\alpha + (1-\gamma))(n\alpha + 1-\gamma)}.$$

7. Closure Theorems:

We shall prove the following closure theorems for the class $TS(\gamma, \alpha, \mu, \lambda)$.

Theorem 7.1: Let u_j in TS(γ , α , μ , λ). j=1,2,.... Then

$$g(z) = \sum_{j=1}^{s} c_j u_j(z) \in TS(\gamma, \alpha, \mu, \lambda)$$

For $u_i(z) = z - \sum_{n=2}^{\infty} a_{n,i} z^n$, where $\sum_{j=1}^{s} c_j = 1$.

Proof.

$$g(z) = \sum_{j=1}^{s} c_j u_j(z)$$

$$= z - \sum_{n=2}^{\infty} \sum_{j=1}^{s} c_j a_{n,j} z^n$$

$$= z - \sum_{n=2}^{\infty} e_n z^n,$$

where $e_n = \sum_{j=1}^{s} c_j a_{n,j}$. Thus $g(z) \in TS(\gamma, \alpha, \mu, \lambda)$ if

$$\sum_{n=2}^{\infty} \frac{[\gamma(n-1) + \mu(n\alpha + 1 - \gamma)]\phi(n, \lambda)}{\mu(\alpha + (1 - \gamma))} e_n \le 1,$$

that is, if

$$\sum_{n=2}^{\infty} \sum_{j=1}^{s} \frac{[\gamma(n-1) + \mu(n\alpha + 1 - \gamma)]\phi(n,\lambda)}{\mu(\alpha + (1 - \gamma))} c_j a_{n,j}$$

$$= \sum_{j=1}^{s} c_j \sum_{n=2}^{\infty} \frac{[\gamma(n-1) + \mu(n\alpha + 1 - \gamma)]\phi(n,\lambda)}{\mu(\alpha + (1 - \gamma))} a_{n,j}$$

$$\leq \sum_{j=1}^{s} c_j = 1.$$

Theorem 7.2 : Let $u, g \in TS(\gamma, \alpha, \mu, \lambda)$. Then

$$h(z) = z - \sum_{n=2}^{\infty} (\alpha_n^2 + b_n^2) z^n \in TS(\gamma, \alpha, \mu, \lambda), where$$

$$\zeta \ge \frac{2\gamma(n-1)\mu^2(\alpha + (1-\gamma))}{[\gamma(n-1) + \mu(n\alpha + 1 - \gamma)]^2 \phi(n, \lambda) - 2\mu^2(\alpha + (1-\gamma))(n\alpha + 1 - \gamma)}.$$

ISSN 2581-9429 IJARSCT

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

Impact Factor: 6.252

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 2, Issue 1, July 2022

Proof: Since $u, g \in TS(\gamma, \alpha, \mu, \lambda)$, so Theorem6.1.1.yields

$$\sum_{n=2}^{\infty} \left[\frac{(\gamma(n-1) + \mu(n\alpha + 1 - \gamma))\phi(n, \lambda)}{\mu(\alpha + (1 - \gamma))} a_n \right]^2 \le 1$$

and

$$\sum_{n=2}^{\infty} \left[\frac{(\gamma(n-1) + \mu(n\alpha+1-\gamma))\phi(n,\lambda)}{\mu(\alpha+(1-\gamma))} b_n \right]^2 \leq 1.$$

We obtain from the last two inequalities

$$\sum_{n=2}^{\infty} \frac{1}{2} \left[\frac{(\gamma(n-1) + \mu(n\alpha + 1 - \gamma))\phi(n,\lambda)}{\mu(\alpha + (1 - \gamma))} \right]^2 (a_n^2 + b_n^2) \le 1.$$
 (29)

But $h(z) \in TS(\gamma, \alpha, \zeta, q, m)$, if and only if

$$\sum_{n=2}^{\infty} \frac{[\gamma(n-1) + \zeta(n\alpha + 1 - \gamma)]\phi(n,\lambda)}{\zeta(\alpha + (1 - \gamma))} (a_n^2 + b_n^2) \le 1,$$
(30)

where $0 < \zeta < 1$, however implies (30) if

$$\frac{[\gamma(n-1)+\zeta(n\alpha+1-\gamma)]\phi(n,\lambda)}{\zeta(\alpha+(1-\gamma))} \leq \frac{1}{2} \left[\frac{(\gamma(n-1)+\mu(n\alpha+1-\gamma))\phi(n,\lambda)}{\mu(\alpha+(1-\gamma))} \right]^{2}.$$

Simplifying, we get

$$\zeta \ge \frac{2\gamma(n-1)\mu^2(\alpha+(1-\gamma))}{[\gamma(n-1)+\mu(n\alpha+1-\gamma)]^2\phi(n,\lambda)-2\mu^2(\alpha+(1-\gamma))(n\alpha+1-\gamma)}.$$

REFERENCES

- [1] Cho, N. E., Woo, S. Y. and Owa, S., Uniform convexity properties for hypergeometric functions, Fract. Calc. Appl. Anal., 5(3) (2002), 303 313.
- [2] De Branges, L., A proof of the Bieberbach conjecture, Acta Math., 154(12) (1985), 137 152.
- [3] El-Deeb, S. M., Bulboaca, T. and Dziok, J., Pascal distribution series connected with certain subclasses of univalent functions, Kyungpook Math. J., 59 (2) (2019), 301 314.
- [4] Kim, Y.C. and Srivastava, H.M., Fractional integral and other linear operators asso ciated with the Gaussian hypergeometric function, Complex Variables Theory Appl. 34, 293 312, (1997).
- [5] Merkes, E. P. and Scott, W. T., Starlike hypergeometric functions, Proc. Amer. Math. Soc., 12 (1961), 885 888.
- [6] Mostafa, A. O., A study on starlike and convex properties for hypergeometric functions, JIPAM. J. Inequal. Pure Appl. Math., 10(3) (2009), Article 87, 8 pp.
- [7] Murugusundaramoorthy, G., Subclasses of starlike and convex functions involving Pois- son distribution series, Afr. Mat. 28 (2017), no. 7-8, 1357 1366.
- [8] Murugusundaramoorthy, S., Vijaya, K., and Porwal, S., Some inclusion results of certain subclass of analytic functions associated with Poisson distribution series, Hacet. J. Math. Stat. 45 (2016), no. 4, 1101–1107.
- [9] Owa, S. and Srivastava, H.M., Univalent and starlike generalized hypergeometric functions, Can. J. Math. 39, 1057-1077, (1987).

ISSN 2581-9429 IJARSCT

International Journal of Advanced Research in Science, Communication and Technology

9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 2, Issue 1, July 2022

- Impact Factor: 6.252
- [10] Silverman, H., Starlike and convexity properties for hypergeometric functions, J. Math. Anal. Appl. 172 (2)(1993), 574 581.
- [11] Srivastava, H. M., Murugusundaramoorthy, G. and Sivasubramanian, S., Hypergeometric functions in the parabolic starlike and uniformly convex domains, Integral Transforms Spec. Funct. 18(7-8) (2007), 511 520.
- [12] Pommerenke, C., Univalent Functions, Vandenhoeck and Ruprecht, Gottingen, (1975).
- [13] Samko, S.G., Kilbas, A. A. and Marichev, O.I., Fractional Integral and Derivatives, Theory and Applications, Gordon and Breach, New York, Philadelphia, London, Paris, Montreux, Toronto and Melbourne, 1993.
- [14] Silverman, H., Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 1975, 51, 109-116.
- [15] Srivaetava, H.M. and Buschman, R.G., Theory and Applications of Convolution Integral Equations, Kluwer Academic Publishers, dordrecht, Boston and London, 1992.

