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Abstract: Cross-device federated learning is a machine learning approach that enables multiple devices to 

collaboratively train a model without sharing their data with each other. This approach is particularly 

useful in medical settings where data privacy and security are paramount. In this context, medical data is 

sensitive and protected by law. Federated learning can help to preserve the privacy of medical data while 

still allowing for the development of models that can be used to improve patient outcomes. One challenge 

with federated learning is the need to protect the model during training and inference. Model encryption is 

a technique that can be used to protect the model from unauthorized access. Elliptic Curve Cryptography 

(ECC) is a form of encryption that is well-suited for federated learning due to its ability to efficiently 

encrypt and decrypt data. In this project, propose a cross-device federated learning approach that utilizes 

medical datasets to build a predictive model. We also employ ECC to encrypt the model during training and 

inference. Divide the medical dataset into subsets that are distributed across multiple devices. Train the 

model collaboratively across all devices using federated learning techniques. Then use ECC to encrypt the 

trained model to protect it from unauthorized access. The proposed system also provides a more accurate 

prediction of disease risk while preserving patient confidentiality. The results show that the SVM-based 

model can achieve high accuracy in predicting disease risk, and the encrypted data can be used effectively 

to train the model without compromising patient privacy. Additionally, our use of ECC encryption provides 

an extra layer of security for the model, ensuring that it remains protected during training and inference. 
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