

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 3, Issue 2, March 2023

Review Paper on an Authentication System using Siamese Convolutional Neural Networks

Shrey Kekade¹, Piyush Morey², Mayur Rajput³, Sahil Karli⁴, Priyanka Bendale⁵

Students, Department of Computer Engineering^{1,2,3,4} Guide, Department of Computer Engineering⁵ Sinhgad College of Engineering, Pune, Maharashtra, India

Abstract: Due to its distinct advantages, finger vein verification has lately drawn more attention. Focusing on the characteristics of finger vein verification, construct a Siamese structure combining with a modified contrastive loss function for training the above CNN, which effectively improves the network's performance. The experimental findings demonstrate that the lightweight CNN's size shrinks to 1/6th of the pretrained-weights based CNN and that it achieves an equal error rate of 75% in the SDUMLA-HMT dataset, which outperforms cutting-edge techniques and nearly maintains the same performance as CNN that is based on pretrained weights.

Keywords: Finger Vein Verification, Convolutional Neural Network, Siamese CNN

REFERENCES

- [1]. Shruti Jadon, IEEE Member, shrutijadon@ieee.org, An Overview of Deep Learning Architectures in Few-Shot Learning Domain, arXiv:2008.06365v3 [cs.CV] 19 Aug 2020.
- [2]. Su Tang1, Shan Zhou1, Wenxiong Kang1, Qiuxia Wu2, Feiqi Deng1, Finger vein verification using a Siamese CNN, 23rd May 2019
- [3]. Miura, N., Nagasaka, A., Miyatake, T.: 'Extraction of finger-vein patterns using maximum curvature points in image profiles', IEICE Trans. Inf. Syst., 2007, 90, (8), pp. 1185–1194
- [4]. Song, W., Kim, T., Kim, H.C., et al.: 'A finger- vein verification system using mean curvature', Pattern Recognit. Lett., 2011, 32, (11), pp. 1541–1547
- [5]. Yang, J., Yang, J., Shi, Y.: 'Finger-vein segmentation based on multi-channel even-symmetric gabor filters'. IEEE Int. Conf. Intelligent Computing & Intelligent Systems, Shanghai, China, 2009, vol. 4, pp. 500–503
- [6]. Lee, E.C., Jung, H., Kim, D.: 'New finger biometric method using near infrared imaging',
- [7]. Sensors, 2011, 11, (3), pp. 2319–2333
- [8]. Ojala, T., Pietikainen, M., Maenpaa, T.: 'Multiresolution gray-scale and rotation invariant texture classification with local binary patterns', IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, (7), pp. 971–987
- [9]. Baochang, Z., Yongsheng, G., Sanqiang, Z., et al.: 'Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor', IEEE Trans. Image Process., 2010, 19, (2), pp. 533–544
- [10]. Rosdi, B.A., Shing, C.W., Suandi, S.A.: 'Finger vein recognition using local line binary pattern', Sensors, 2011, 11, (12), pp. 11357–11371
- [11]. Yang, G., Xi, X., Yin, Y.: 'Finger vein recognition based on a personalized best bit map', Sensors, 2012, 12, (2), pp. 1738–1757
- [12]. Yang, G., Xiao, R., Yin, Y., et al.: 'Finger vein recognition based on personalized weight maps', Sensors, 2013, 13, (9), pp. 12093–12112
- [13]. Yu, C.-B., Qin, H.-F., Cui, Y.-Z., et al.: 'Finger-vein image recognition combining modified Hausdorff distance with minutiae feature matching', Interdiscip. Sci. Comput. Life Sci., 2009, 1, (4), pp. 280–289
- [14]. Liu, F., Yang, G., Yin, Y., et al.: 'Singular value decomposition based minutiae matching method for finger vein recognition', Neurocomputing, 2014, 145, pp. 75–89
- [15]. Pang, S., Yin, Y., Yang, G., et al.: 'Rotation invariant finger vein recognition' (Springer Berlin Heidelberg, Berlin, Heidelberg, 2012), pp. 151–156

IJARSCT

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 3, Issue 2, March 2023

- [16]. Peng, J., Wang, N., El-Latif, A.A.A., et al.: 'Finger-vein verification using gabor filter and SIFT feature matching'. 2012 Eighth Int. Conf. Intelligent Information Hiding and Multimedia Signal Processing, Athens, Greece, 18–20 July 2012, pp. 45–48
- [17]. Wu, J.-D., Liu, C.-T.: 'Finger-vein pattern identification using principal component analysis and the neural network technique', Expert Syst. Appl., 2011, 38, (5), pp. 5423–5427
- [18]. Liu, Z., Yin, Y., Wang, H., et al.: 'Finger vein recognition with manifold learning', J. Netw. Comput. Appl., 2010, 33, (3), pp. 275–282
- [19]. Liu, F., Yin, Y., Yang, G., et al.: 'Finger vein recognition with superpixelbased features'. IEEE Int. Joint Conf. Biometrics, Florida, USA, 29 September 2014–2 October 2014, pp. 1