

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 2, Issue 2, December 2022

The Design of Digital System with CSA

L. Prabhavathi¹, P. Supriya², N. Haritha³, T. R. Priyadharshini⁴, V. Pawan Kalyan⁵, K. Hemanth Reddy⁶

Assistant Professor, Department of Electronics and Communication Engineering¹ UG Students, Department of Electronics and Communication Engineering^{2,3,4,5,6} Sri Venkatesa Perumal College of Engineering and Technology, Puttur, AP, India

Abstract: In this paper, we present a carry skip adder (CSKA) structure that has a higher speed yet lower energy consumption compared with the conventional one. The speed enhancement is achieved by applying concatenation and incrementation schemes to improve the efficiency of the conventional CSKA (Conv-CSKA) structure. In addition, instead of utilizing multiplexer logic, the proposed structure makes use of AND-OR-Invert (AOI) and ORAND-Invert (OAI) compound gates for the skip logic. The structure may be realized with both fixed stage size and variable stage size styles, wherein the latter further improves the speed and energy parameters of the adder. Finally, a hybrid variable latency extension of the proposed structure, which lowers the power consumption without considerably impacting the speed, is presented. This extension utilizes a modified parallel structure for increasing the slack time, and hence, enabling further voltage reduction. The proposed structures are assessed by comparing their speed, power, and energy parameters with those of other adders using a 45-nm static CMOS technology for a wide range of supply voltages. The results that are obtained using HSPICE simulations reveal, on average, 44% and 38% improvements in the delay and energy, respectively, compared with those of the Conv-CSKA. In addition, the power-delay product was the lowest among the structures considered in this paper, while its energydelay product was almost the same as that of the Kogge-Stone parallel prefix adder with considerably smaller area and power consumption. Simulations on the proposed hybrid variable latency CSKA reveal reduction in the power consumption compared with the latest works in this field while having a reasonably high speed.

Keywords: Carry skip adder (CSKA), energy efficient, high performance, hybrid variable latency adders, voltage scaling

REFERENCES

- [1]. I. Koren, Computer Arithmetic Algorithms, 2nd ed. Natick, MA, USA: A K Peters, Ltd., 2002.
- [2]. R. Zlatanovici, S. Kao, and B. Nikolic, "Energy-delay optimization of 64-bit carry-lookahead adders with a 240 ps 90 nm CMOS design example," IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 569–583, Feb. 2009.
- [3]. S. K. Mathew, M. A. Anders, B. Bloechel, T. Nguyen, R. K. Krishnamurthy, and S. Borkar, "A 4-GHz 300mW 64-bit integer execution ALU with dual supply voltages in 90-nm CMOS," IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 44–51, Jan. 2005.
- [4]. V. G. Oklobdzija, B. R. Zeydel, H. Q. Dao, S. Mathew, and R. Krishnamurthy, "Comparison of high-performance VLSI adders in the energy-delay space," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 13, no. 6, pp. 754–758, Jun. 2005.
- [5]. B. Ramkumar and H. M. Kittur, "Low-power and area-efficient carry select adder," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 2, pp. 371–375, Feb. 2012.
- [6]. M. Vratonjic, B. R. Zeydel, and V. G. Oklobdzija, "Low- and ultra lowpower arithmetic units: Design and comparison," in Proc. IEEE Int. Conf. Comput. Design, VLSI Comput. Process. (ICCD), Oct. 2005, pp. 249– 252.
- [7]. C. Nagendra, M. J. Irwin, and R. M. Owens, "Area-time-power tradeoffs in parallel adders," IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 43, no. 10, pp. 689–702, Oct. 1996.

IJARSCT

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 2, Issue 2, December 2022

- [8]. Y. He and C.-H. Chang, "A power-delay efficient hybrid carrylookahead/carry-select based redundant binary to two's complement converter," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 1, pp. 336–346, Feb. 2008.
- [9]. C.-H. Chang, J. Gu, and M. Zhang, "A review of 0.18 µm full adder performances for tree structured arithmetic circuits," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 13, no. 6, pp. 686–695, Jun. 2005.
- [10]. D. Markovic, C. C. Wang, L. P. Alarcon, T.-T. Liu, and J. M. Rabaey, "Ultralow-power design in near-threshold region," Proc. IEEE, vol. 98, no. 2, pp. 237–252, Feb. 2010.
- [11]. GokulaChandar ,Leeban MosesM; T. Perarasi M; Rajkumar; "Joint Energy and QoS-Aware Cross-layer Uplink resource allocation for M2M data aggregation over LTE-A Networks", IEEE explore, doi:10.1109/ICAIS53314.2022.9742763.
- [12]. Mustafa AlperAkkaş, RadosvetaSokullu, "An IoT-based greenhouse monitoring system with Micaz motes", https://doi.org/10.1016/j.procs.2017.08.300.
- [13]. P. V. Vimal and K. S. Shivaprakasha, "IOT based greenhouse environment monitoring and controlling system using Arduino platform," 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), Kannur, 2017, pp. 1514-1519.
- [14]. DhudduHaripriya, Venkatakiran S, Gokulachandar A, "UWB-Mimo antenna of high isolation two elements with wlan single band-notched behavior using roger material", Vol 62, Part 4, 2022, Pg 1717-1721, https://doi.org/10.1016/j.matpr.2021.12.203.
- [15]. GokulaChandar A, Vijayabhasker R., and Palaniswami S, "MAMRN MIMO antenna magnetic field", Journal of Electrical Engineering, vol.19, 2019.
- [16]. V. G. Oklobdzija, B. R. Zeydel, H. Dao, S. Mathew, and R. Krishnamurthy, "Energy-delay estimation technique for highperformance microprocessor VLSI adders," in Proc. 16th IEEE Symp. Comput. Arithmetic, Jun. 2003, pp. 272–279.
- [17]. M. Lehman and N. Burla, "Skip techniques for high-speed carrypropagation in binary arithmetic units," IRE Trans. Electron. Comput., vol. EC-10, no. 4, pp. 691–698, Dec. 1961.
- [18]. S.Kannadhasan and R.Nagarajan, Design of Microstrip Patch Antennas with Various Shapes for Wireless Applications, International Conference on Advances in Technology, Management and Education (ICATME 2021), National Institute of Technical Teachers Teaching and Research (NITTTR Bhopal), 08-09 January 2021, Published in IEEE Digital Explore, DOI:10.1109/ICATME50232.2021.9732749
- [19]. M. Alioto and G. Palumbo, "A simple strategy for optimized design of one-level carry-skip adders," IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 50, no. 1, pp. 141–148, Jan. 2003.
- [20]. S. Majerski, "On determination of optimal distributions of carry skips in adders," IEEE Trans. Electron. Comput., vol. EC-16, no. 1, pp. 45–58, Feb. 1967.
- [21]. A. Guyot, B. Hochet, and J.-M. Muller, "A way to build efficient carryskip adders," IEEE Trans. Comput., vol. C-36, no. 10, pp. 1144–1152, Oct. 1987.
- [22]. S. Turrini, "Optimal group distribution in carry-skip adders," in Proc. 9th IEEE Symp. Comput. Arithmetic, Sep. 1989, pp. 96–103.
- [23]. P. K. Chan, M. D. F. Schlag, C. D. Thomborson, and V. G. Oklobdzija, "Delay optimization of carry-skip adders and block carry-lookahead adders using multidimensional dynamic programming," IEEE Trans. Comput., vol. 41, no. 8, pp. 920–930, Aug. 1992.
- [24]. V. Kantabutra, "Designing optimum one-level carry-skip adders," IEEE Trans. Comput., vol. 42, no. 6, pp. 759–764, Jun. 1993.
- [25]. S.Kannadhasan, G.Karthikeyan and V.Sethupathi, A Graph Theory Based Energy Efficient Clustering Techniques in Wireless Sensor Networks. Information and Communication Technologies Organized by Noorul Islam University (ICT 2013) Nagercoil on 11-12 April 2013, Published for Conference Proceedings by IEEE Explore Digital Library 978-1-4673-5758-6/13 @2013 IEEE
- [26]. S. Jia et al., "Static CMOS implementation of logarithmic skip adder," in Proc. IEEE Conf. Electron Devices Solid-State Circuits, Dec. 2003, pp. 509–512.

IJARSCT Impact Factor: 6.252

IJARSCT

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 2, Issue 2, December 2022

BIBLIOGRAPHY

P.Supriya, UG Student, Dept of ECE,SVPCET Area of Interest – VLSI

N. Haritha, UG Student, Dept of ECE, SVPCET Area of Interest – VLSI

T. R. Priyadharshini, UG Student, Dept of ECE,SVPCET Area of Interest – VLSI

V. Pawan Kalyan, UG Student, Dept of ECE, SVPCET Area of Interest – VLSI

K. Hemanth Reddy, UG Student, Dept of ECE, SVPCET Area of Interest – VLSI