IJARSCT

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 2, Issue 1, June 2022

Plant Disease Detection Using CNN: A Review

Mr. Deshmukh Akshay S.1 and Prof. Dr. Yerigeri V. V.2

M.Tech Student, College of Engineering Ambajogai, Beed, India¹ Professor, College of Engineering Ambajogai, Beed, India²

Abstract: Agricultural productivity is a key component of Indian economy. Therefore the contribution of food crops and cash crops is highly important for both the environment and human beings. Every year crops succumb to several diseases. Due to inadequate diagnosis of such diseases and not knowing symptoms of the disease and its treatment many plants die. This study provides insights into an overview of the plant disease detection using different algorithms. A CNN based method for plant disease detection has been proposed here. Simulation study and analysis is done on sample images in terms of time complexity and the area of the infected region. It is done by image processing technique. A total of 15 cases have been fed to the model, out of which 12 cases are of diseased plant leaves namely, Bell Paper Bacterial Spot, Potato Early Blight, Potato Late Blight, Tomato Target Spot, Tomato Mosaic Virus, Tomato Yellow Leaf Curl Virus, Tomato Bacterial Spot, Tomato Early Blight, Tomato Late Blight, Tomato Leaf Mold, Tomato Septoria Leaf Spot and Tomato Spider Mites and 3 cases of healthy leaves namely, Bell Paper Healthy, Potato Healthy and Tomato Healthy. Test accuracy is obtained as 94.80%. Different performance matrices are derived for the same.

Keywords: Powdery Mildew, Downy Mildew, Blight etc.

REFERENCES

- [1]. Eftekhar Hossain, Md. Farhad Hossain, Mohammad Anisur Rahaman, "A Color and Texture Based Approach for the Detection and Classification of Plant Leaf Disease Using KNN Classifier", Proceeding of the International Conference on Electrical, Computer and Communication Engineering (ECCE), Cox's Bazaar, Bangladesh, 2019.
- [2]. Sammy V. Militante, Bobby D. Gerardo, Nanette V. Dionisio, "Plant Leaf Detection and Disease Recognition using Deep Learning" Proceeding of the IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE), Yunlin, Taiwan, 2019, pp 579-582
- [3]. Ch. Usha Kumari, S. Jeevan Prasad, G. Mounika, "Leaf Disease Detection: Feature Extraction with K-means clustering and Classification with ANN "Proceedings of the 3rd International Conference on Computing Methodologies and Communication (ICCMC)", Erode, India, 2019, pp 1095-1098
- [4]. Mercelin Francis, C. Deisy, "Disease Detection and Classification in Agricultural Plants Using Convolutional Neural Networks A Visual Understanding", Proceeding of the 6th International Conference on Signal processing and Integrated network, Noida, India, 2019, pp 1063-1068.
- [5]. Jiayue Zhao, Jianhua Qu, "A Detection Method for Tomato Fruit Common Physiological Diseases Based on YOLOv2 "Proceeding of the 10th International Conference on Information Technology in Medicine and Education", Qingdao, China, China, 2019
- [6]. Robert G. de Luna, Elmer P. Dadios, Argel A. Bandala, "Automated Image Capturing System for Deep Learning-based Tomato Plant Leaf Disease Detection and Recognition" Proceeding of the IEEE Region 10 Conference, Jeju, South Korea, 2018, pp 1414-1419.
- [7]. Halil Durmus, Ece Olcay Gunes, "Disease detection on the leaves of the tomatoplants by using deep learning" Proceeding of the 6th International Conference of the Agro-Geoinformatics, 2016, Fairfax, VA, USA
- [8]. H. Sabrol , K. Satish, "Tomato plant disease classification in digital images using classification tree" Proceeding of the International conference on communication and signal processing, Melmaruvathur, India, 2016 pp 1242-1246
- [9]. Usama Mokhtar, Mona A.S. Ali, Hesham Henfy, "Tomato leaves diseases detection approach based on support vector machines" Proceeding of the 11th International Computer Engineering Conference, Cairo, Egypt, 2015 pp 246-250

IJARSCT

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 2, Issue 1, June 2022

- [10]. Suma V.R Amog Shetty, Rishab F Tated, Sunku Rohan, Triveni S Pujar, "CNNbased Leaf Disease Identification and Remedy Recommendation System", Proceedings of the Third International Conference on Electronics Communication and Aerospace Technology, Coimbatore, India, 2019 pp 395-399.
- [11]. Akshay K, Vani M, "Image Based Tomato Leaf Disease Detection", Proceedings of the 10th International Conference on Computing, Communication and Networking Technology, Kanpur, India, 2019.
- [12]. Sharada P Mohanty, David P Hughes, and Marcel Salath, "Using deep learning for image-based plant disease detection". In: Frontiers in plant science 7 (2016), p. 1419.
- [13]. S. D. Khirade and A. B. Patil. "Plant Disease Detection Using Image Processing", Proceeding of the International Conference on Computing Communication Control and Automation. Feb. 2015, pp. 768–771
- [14]. M. Brahimi, K. Boukhalfa, and A. Moussaoui, "Deep Learning for Tomato Diseases: Classification and Symptoms Visualization", vol. 31, no. 4, pp. 299–315, 2017.
- [15]. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. "Imagenet classification with deep convolutional neural networks". Proceeding of the Advances in neural information processing systems, 2012, pp. 1097–1105.
- [16]. K. Elangovan and S. Nalini, "Plant disease classification using image segmentation and SVM techniques", International Journal of Computational Intelligence Research, vol. 13(7), pp. 1821-1828, 2017.
- [17]. Y. Dandawate and R. Kokare, "An automated approach for classification of plant diseases towards development of futuristic decision support system in indian perspective," Proceedings of the International Conference Advances in Computing, Communications and Informatics (ICACCI), 2015, pp. 794-799.

DOI: 10.48175/568