IJARSCT

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 5, November 2025

Voice Controlled Robotic Car

Prof. Pratyasha Pradhan¹, Mr. Vinod Kumar MS², Mr. Akshay Kumar³, Mr. Suryanarayana Raju S⁴, Mr. Madhava Rao⁵

¹Professor, CS&E Dept, Proudhadevaraya Institute of Technology, Hosapete, Karnataka, India ^{2,3,4,5}Students, CS&E Dept, Proudhadevaraya Institute of Technology, Hosapete, Karnataka, India

Abstract: The proposed project presents the design and implementation of a voice-controlled robot that integrates intelligent sensing, communication, and actuation mechanisms to enhance human–machine interaction. The system is developed using an Arduino microcontroller as the central processing unit, interfaced with a Bluetooth module to receive real-time voice commands from a Voice Bot mobile application. Upon processing these commands, the Arduino controls the robot's motion via an H-Bridge motor driver circuit, enabling forward, backward, left, and right stop movements of the DC motors.

To ensure environmental awareness and safety, the robot incorporates an ultrasonic sensor for obstacle detection, preventing collisions by halting or rerouting the robot's motion when an object is detected within a predefined distance. For visual indication and user feedback, the system integrates a 16x2 LCD display that shows status messages such as movement direction or obstacle detection.

An additional feature of the robot is its automatic lighting system for operation in low-light conditions. Using an LDR (Light Dependent Resistor), the system monitors ambient light levels; when darkness is detected, the Arduino activates a relay-driven LED headlight to illuminate the path. Furthermore, left and right indicator LEDs are triggered synchronously with corresponding motion commands, providing clear directional signaling similar to real-world vehicles.

This multifunctional design combines voice-based control, autonomous sensing, and user feedback mechanisms, making it an efficient and user-friendly robotic platform. Its applications range from assistive robotics for physically challenged individuals, smart home automation, and surveillance, to educational demonstrations in embedded systems and robotics. By integrating low-cost sensors and widely available components, the system ensures affordability, scalability, and adaptability for future enhancements, including IoT-based remote monitoring and machine learning-driven decision-making.

Keywords: Light Dependent Resistor.

