IJARSCT

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 2, November 2025

Retinology AI

Sankalp Singh¹, Atharva Kachare², Aditya Mulay³, Jay Jahagirdar⁴
Students, School of Computing¹⁻⁴
MIT ADT University, Pune, India

Abstract: Diabetic Retinopathy (DR) remains a major cause of preventable blindness, particularly in low-resource regions of India. This paper presents Retinology AI, a desktop-based application that integrates deep learning (ResNet50) with an intuitive Tkinter graphical interface to automatically classify retinal fundus images into five severity stages: Normal, Mild, Moderate, Severe, and Proliferative. The system operates fully offline, using ImageNet-pretrained features combined with statistical image analysis for brightness, contrast, and lesion detection. Upon analysis, the application generates a professional PDF report that includes diagnostic classification, confidence levels, and follow-up recommendations. Experimental results demonstrate rapid inference (<3 seconds), high accuracy (85–90%), and realistic confidence estimation, validated across multiple test images. The project aims to support early DR screening in resource-constrained Indian settings while ensuring patient data privacy and low deployment costs.

Keywords: Diabetic Retinopathy, Deep Learning, ResNet50, Offline AI, Medical Image Analysis, Python Tkinter

DOI: 10.48175/568

