

Microwave-Assisted Synthesis of Novel Acylhydrazoneoximes: A Comparative Evaluation with the Conventional Method

**Chavan Jotiram K.^{1*}, Patil Raju M.², Patil Reshma G.¹, Junghare Nilesh V.³,
Madhale Santosh V.⁴, Patil Minakshi V.⁵, Pawar Prakash S.⁶**

^{1*, 3, 5, 6}Department of Chemistry, Shri Yashwantrao Patil Science College, Solankur, Kolhapur, Maharashtra, India

⁴Department of Botany, Shri Yashwantrao Patil Science College, Solankur, Kolhapur, Maharashtra, India

¹Department of Chemistry, Bhogawati Mahavidyalaya, Kurukali, Kolhapur, Maharashtra, India

²Department of Chemistry, Institute of Science, Dr. Homi Bhabha State University, Mumbai, Maharashtra, India

Corresponding author: jkchavanpsc@gmail.com@gmail.com

Abstract: The present work reports an efficient microwave-assisted synthesis of novel acylhydrazoneoxime ligands derived from para-substituted isonitrosoacetophenones and terephthalohydrazide. The synthesized compounds were characterized using elemental analysis, UV-Visible, FTIR, ¹H-NMR, ¹³C-NMR, and mass spectrometry techniques. A comparative assessment between the conventional reflux method and microwave irradiation clearly demonstrates the superiority of the microwave-assisted approach in terms of reaction time, yield, energy efficiency, and operational simplicity. Microwave synthesis resulted in higher yields within significantly shorter reaction times, highlighting its advantages as a green and sustainable alternative to conventional heating methods.

Keywords: Microwave-assisted synthesis, Conventional method, Acylhydrazoneoximes, Isonitrosoacetophenones, Terephthalohydrazide