IJARSCT

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 1, November 2025

Sensing Driven Automation to Reduce Carbon Footprints in Large Spaces

Mr. Galhe Prathmesh Dattatray, Ms. Bhor Pranali Kundlik, Prof. Kolse C. A., Prof. Said S. K
Department of AI&DS

Jai hind College of Engineering, Kuran, Pune, Maharashtra, India prathmeshgalhe9@gmail.com and pranalibhor0803@gmail.com

Abstract: Modern commercial and institutional buildings are major energy consumers, with space heating, ventilation, and lighting alone accounting for roughly half of all energy use [1]. This paper explores how richly sensed indoor environmental data and occupant information can be used to dynamically control HVAC, lighting, fans, and plug-loads to significantly reduce energy consumption. We review methods including occupancy sensing, machine-learning occupancy prediction, demand-controlled ventilation, adaptive thermostat setbacks, and smart appliance control. For instance, occupancy-triggered lighting controls can cut lighting use by 10–90% [2], while integrated ceiling fans and raised thermostat setpoints can reduce cooling energy by ~39% [3]. Demand-based plug-load scheduling has achieved up to 86% savings on selected devices [4]. In a hypothetical open-plan office case study, applying these strategies simultaneously can yield total energy savings on the order of tens of percent (e.g. ~12% overall energy reduction observed in a field trial [5]) while maintaining occupant comfort. We conclude that multi-domain smart controls informed by sensor data offer a promising path to deep, evidence-based energy savings in real buildings.

Keywords: Energy efficiency, occupancy detection, environmental sensing, HVAC optimization, behavioral analytics, smart building automation, renewable energy integration

DOI: 10.48175/568

