IJARSCT

International Journal of Advanced Research in Science, Communication and Technology

hnology 9001:2015

Impact Factor: 7.67

 $International\ Open-Access,\ Double-Blind,\ Peer-Reviewed,\ Refereed,\ Multidisciplinary\ Online\ Journal$

Volume 5, Issue 3, October 2025

Evaluation of R290 and R600a as Sustainable Substitutes for R22 in Refrigeration Systems: Performance, Safety, and Environmental Impact

Onkar A. Dhumal*1 and C. S. Choudhari2

1,2 Department of Mechanical Engineering,
All India Shri Shivaji Memorial Society, College of Engineering, Pune, Maharashtra, India
Savitribai Phule Pune University, Pune, Maharashtra, India

Abstract: As sustainable alternatives to traditional HCFC and HFC refrigerants, this study compares the thermodynamic performance of the hydrocarbon refrigerants R290 (propane) and R600a (isobutane). Assuming quasi-equilibrium compression, the analysis was conducted at condensing temperatures between 30 to 50 degrees Celsius and evaporating temperatures between -10 to 10 degrees Celsius. The results show that R600a required 2 to 3.5% less compressor power input and consistently produced a 2 to 4 percent higher coefficient of performance (COP) than R290. Additionally, R290 maintained a lower pressure ratio, especially at high condensing temperatures, whereas R600a demonstrated 6 to 9 °C lower discharge temperatures, improving compressor reliability. As the condensing temperature rose from 30 to 50 degrees Celsius, both refrigerants displayed a ~44% decrease in COP. From an environmental standpoint, both R290 and R600a demonstrated zero ozone depletion potential (ODP = 0) and ultra-low global warming potential (GWP < 3), providing a drastic improvement compared with R22 (GWP \approx 1810) and R134a (GWP \approx 1430). These findings confirm the technical viability and environmental superiority of R290 and R600a, supporting their broader adoption in energy-efficient and eco-friendly refrigeration systems.

Keywords: R290, R600a, hydrocarbon refrigerants, vapor compression system, COP, energy efficiency

