IJARSCT

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, April 2025

Eco-Friendly and Recyclable Silica Gel : An Efficient Catalyst for the Synthesis of 14-Aryl-14H-Dibenzo[a,j] Xanthenes

Komal Patil¹, Pratibha Mhatre², Anushka Mhatre³, Gurumeet C. Wadhava⁴, Kalpans Jain⁵, Sajid F. Shaikh⁶, Amod N. Thakkar⁷

Students P.G. Department of Chemistry, Veer Wajekar College Phunde, Uran^{1,2,3} Assistant Professor Department of Chemistry, Veer Wajekar College Phunde, Uran⁴ Principal and Head Department of Chemistry, Veer Wajekar College Phunde, Uran⁵ Professor and Principal, Royal College of Arts, Science & Commerce, Mira Road, Thane⁶ Principal, Veer Wajekar ASC College, Phunde, Uran⁷

Abstract: A simple and highly effective approach has been established for synthesizing 14-aryl-14Hdibenzo[a,j]xanthene derivatives through the condensation of substituted benzaldehyde and β -naphthol. The reaction was catalyzed by Silica gel(Silica gel and carried out using both microwave irradiation and conventional methods. The key benefits of this method include a shorter reaction time, high product yield, and environmentally friendly features, such as the use of a non-toxic, cost-effective, and recyclable heterogeneous catalyst, eliminating the need for hazardous solvents and toxic catalysts.

Keywords: Dibenzo[a,j]xanthene, Titanium dioxide, Aldehyde, β-Naphthol, Green synthesis.

