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Abstract: This comprehensive study investigates the pervasive issue of deep fakes within the context of 

deep learning applications, focusing on their detection and production. Utilizing a diverse array of deep 

learning algorithms, including InceptionResnetV2, VGG19, CNN, Xception, InceptionV3, EfficientNetB1, 

DenseNet121, Hybrid Model, LSTM, ResNext-LSTM, and MRI-GAN, the research systematically evaluates 

their effectiveness in detecting deep fakes. Results reveal varying levels of accuracy, with Xception 

emerging as the most precise algorithm, achieving an accuracy of 99.32%. Notably, InceptionResnetV2 and 

DenseNet121 also demonstrate robust performance, with accuracies surpassing 99%. However, certain 

models like VGG19 and LSTM exhibit lower accuracy rates, underscoring the need for further refinement. 

These findings underscore the urgent necessity for robust detection mechanisms amidst the proliferation of 

malicious deep fakes, safeguarding against potential societal ramifications such as misinformation and 

privacy breaches. 
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