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Abstract: The fundamental interaction between electrons and atoms is described in quantum mechanics, 

which forms the basis of the physical description of all substances. While classical descriptions at the 

macroscopic level can often approximate these quantum effects, there has been an increasing focus in 

recent years on material systems where quantum effects persist across a broader spectrum of energy and 

length scales. Superconductors, graphene, topological insulators, Weyl semimetals, quantum spin liquids, 

and spin ices are examples of such materials. A considerable number of these entities obtain their 

characteristics through reduced dimensionality, specifically by confining electrons to two-dimensional 

surfaces. Furthermore, these materials often consist of electrons that cannot be regarded as independent 

particles due to their intense interactions; instead, they generate quasiparticles, which are collective 

excitations. However, it is worth noting that quantum-mechanical effects profoundly modify the properties 

of the material in every instance. This review provides an overview of the electronic characteristics of 

quantum materials as observed via the electron wavefunction. It investigates how the topology and 

entanglement of the material lead to an extensive range of quantum states and phases, which are more 

difficult to characterize classically than conventionally ordered states that are also influenced by quantum 

mechanics, including ferromagnetism. 
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